论文标题

少量显微镜图像细胞分割

Few-Shot Microscopy Image Cell Segmentation

论文作者

Dawoud, Youssef, Hornauer, Julia, Carneiro, Gustavo, Belagiannis, Vasileios

论文摘要

显微镜图像中的自动细胞分割效果很好,可以通过全面监督训练的深神经网络的支持。但是,收集和注释图像并不是每个新的显微镜数据库和细胞类型的可持续解决方案。取而代之的是,我们假设我们可以从不同域(源)(源)和有限数量的带注释的图像数据集中访问来自感兴趣域(目标)的带注释的图像数据集的大量图像数据集,其中每个域不仅表示不同的图像外观,还表示不同类型的单元格分段问题。我们将这个问题作为元学习提出,目的是从可用的源域数据集和单元格细分任务中学习通用且适应性的几弹性学习模型。随后可以在包含不同图像外观和不同单元格类型的目标域的几个注释图像上进行微调。在我们的元学习训练中,我们提出了三个目标函数的组合,以分割细胞,使用跨域任务从分类边界移开分割结果,并学习源域任务之间的不变表示。我们在五个公共数据库上进行的实验显示了使用标准分割神经网络体系结构从1到10次元学习的有希望的结果。

Automatic cell segmentation in microscopy images works well with the support of deep neural networks trained with full supervision. Collecting and annotating images, though, is not a sustainable solution for every new microscopy database and cell type. Instead, we assume that we can access a plethora of annotated image data sets from different domains (sources) and a limited number of annotated image data sets from the domain of interest (target), where each domain denotes not only different image appearance but also a different type of cell segmentation problem. We pose this problem as meta-learning where the goal is to learn a generic and adaptable few-shot learning model from the available source domain data sets and cell segmentation tasks. The model can be afterwards fine-tuned on the few annotated images of the target domain that contains different image appearance and different cell type. In our meta-learning training, we propose the combination of three objective functions to segment the cells, move the segmentation results away from the classification boundary using cross-domain tasks, and learn an invariant representation between tasks of the source domains. Our experiments on five public databases show promising results from 1- to 10-shot meta-learning using standard segmentation neural network architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源