论文标题

经典客户委托量子计算的安全限制

Security Limitations of Classical-Client Delegated Quantum Computing

论文作者

Badertscher, Christian, Cojocaru, Alexandru, Colisson, Léo, Kashefi, Elham, Leichtle, Dominik, Mantri, Atul, Wallden, Petros

论文摘要

安全的授权量子计算允许计算较弱的客户端以隐私的方式将任意量子计算外包给不受信任的量子服务器。实现经典量子计算代表团的有前途的候选人之一是经典的偏远远程状态准备($ rsp_ {cc} $),其中客户端使用经典渠道远程准备量子状态。但是,使用$ rsp_ {cc} $作为子模块所产生的隐私损失尚不清楚。 在这项工作中,我们使用Maurer and Renner(ICS'11)的建设性加密框架进行了调查。我们首先将$ rsp_ {cc} $的目标确定为从经典渠道构建理想的RSP资源,然后揭示使用$ rsp_ {cc} $的安全限制。首先,我们发现构建理想的RSP资源(来自经典渠道)和克隆量子状态的任务之间的基本关系。任何经典构建的理想RSP资源都必须泄漏到服务器上生成的量子状态的完整经典描述(可能以编码形式),即使我们仅针对计算安全性。结果,我们发现,由于无关定理,不可能实现共同的RSP资源,而不会大大削弱其保证。其次,以上结果并不排除特定的$ rsp_ {cc} $协议至少在某些情况下可以替换量子通道,例如Br​​oadbent等人的通用盲量计算(UBQC)协议。 (FOCS '09)。但是,我们表明,只要$ rsp_ {cc} $用作子例程,就无法维护所得的UBQC协议。第三,我们表明,Cojocaru等人的$ rsp_ {cc} $协议qfactory替换上述UBQC协议的量子通道。 (Asiacrypt '19),保留UBQC的较弱,基于游戏的安全性。

Secure delegated quantum computing allows a computationally weak client to outsource an arbitrary quantum computation to an untrusted quantum server in a privacy-preserving manner. One of the promising candidates to achieve classical delegation of quantum computation is classical-client remote state preparation ($RSP_{CC}$), where a client remotely prepares a quantum state using a classical channel. However, the privacy loss incurred by employing $RSP_{CC}$ as a sub-module is unclear. In this work, we investigate this question using the Constructive Cryptography framework by Maurer and Renner (ICS'11). We first identify the goal of $RSP_{CC}$ as the construction of ideal RSP resources from classical channels and then reveal the security limitations of using $RSP_{CC}$. First, we uncover a fundamental relationship between constructing ideal RSP resources (from classical channels) and the task of cloning quantum states. Any classically constructed ideal RSP resource must leak to the server the full classical description (possibly in an encoded form) of the generated quantum state, even if we target computational security only. As a consequence, we find that the realization of common RSP resources, without weakening their guarantees drastically, is impossible due to the no-cloning theorem. Second, the above result does not rule out that a specific $RSP_{CC}$ protocol can replace the quantum channel at least in some contexts, such as the Universal Blind Quantum Computing (UBQC) protocol of Broadbent et al. (FOCS '09). However, we show that the resulting UBQC protocol cannot maintain its proven composable security as soon as $RSP_{CC}$ is used as a subroutine. Third, we show that replacing the quantum channel of the above UBQC protocol by the $RSP_{CC}$ protocol QFactory of Cojocaru et al. (Asiacrypt '19), preserves the weaker, game-based, security of UBQC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源