论文标题
噪声刺激性适应控制,用于利用噪声词典的监督声系统识别
Noise-Robust Adaptation Control for Supervised Acoustic System Identification Exploiting A Noise Dictionary
论文作者
论文摘要
我们提出了一种通过利用噪声词典来识别噪声的适应控制策略,以用于块连接线监督的声学系统识别。所提出的算法利用了明显的光谱结构,该光谱结构表征了许多类型的干扰噪声信号。我们通过线性高斯离散傅立叶变换状态空间模型对嘈杂的观测值进行建模,该模型的参数是由在线广义期望最大化算法估算的。与所有其他最先进的方法不同,我们建议通过字典模型对观测概率密度函数的协方差矩阵进行建模。我们建议从培训数据中学习噪声词典,只要系统不兴奋,就可以在网上或在线收集噪声词,而我们可以不断地推断激活。所提出的算法代表了一种基于机器的新型方法,用于噪声适应控制,该方法可在以高级和非平稳性干扰噪声信号和突然的系统变化为特征的应用中更快地收敛。
We present a noise-robust adaptation control strategy for block-online supervised acoustic system identification by exploiting a noise dictionary. The proposed algorithm takes advantage of the pronounced spectral structure which characterizes many types of interfering noise signals. We model the noisy observations by a linear Gaussian Discrete Fourier Transform-domain state space model whose parameters are estimated by an online generalized Expectation-Maximization algorithm. Unlike all other state-of-the-art approaches we suggest to model the covariance matrix of the observation probability density function by a dictionary model. We propose to learn the noise dictionary from training data, which can be gathered either offline or online whenever the system is not excited, while we infer the activations continuously. The proposed algorithm represents a novel machine-learning based approach to noise-robust adaptation control which allows for faster convergence in applications characterized by high-level and non-stationary interfering noise signals and abrupt system changes.