论文标题

外部影响的代理的概念框架:辅助加固学习评论

A Conceptual Framework for Externally-influenced Agents: An Assisted Reinforcement Learning Review

论文作者

Bignold, Adam, Cruz, Francisco, Taylor, Matthew E., Brys, Tim, Dazeley, Richard, Vamplew, Peter, Foale, Cameron

论文摘要

强化学习代理人的长期目标是能够在复杂的现实世界情景中执行任务。外部信息的使用是将代理扩展到更复杂的问题的一种方法。但是,使用外部信息通常缺乏不同方法之间的协作或互操作性。在这项工作中,在审查外部影响的方法时,我们提出了一个概念框架和分类法,以辅助强化学习,旨在通过分类和比较在学习过程中使用外部信息的各种方法来促进协作。拟议的分类法详细介绍了外部信息源与学习者代理之间的关系,突出了信息分解,结构,保留的过程以及如何使用它来影响代理学习。除了审查最新方法外,我们还确定了使用外部信息的当前强化学习流,以改善代理商的绩效及其决策过程。其中包括启发式增强学习,互动增强学习,从演示,转移学习和从多个来源学习。这些强化学习流以脚手架的学习者的共同目标运行。最后,我们讨论了在辅助强化学习系统领域未来工作的进一步可能性。

A long-term goal of reinforcement learning agents is to be able to perform tasks in complex real-world scenarios. The use of external information is one way of scaling agents to more complex problems. However, there is a general lack of collaboration or interoperability between different approaches using external information. In this work, while reviewing externally-influenced methods, we propose a conceptual framework and taxonomy for assisted reinforcement learning, aimed at fostering collaboration by classifying and comparing various methods that use external information in the learning process. The proposed taxonomy details the relationship between the external information source and the learner agent, highlighting the process of information decomposition, structure, retention, and how it can be used to influence agent learning. As well as reviewing state-of-the-art methods, we identify current streams of reinforcement learning that use external information in order to improve the agent's performance and its decision-making process. These include heuristic reinforcement learning, interactive reinforcement learning, learning from demonstration, transfer learning, and learning from multiple sources, among others. These streams of reinforcement learning operate with the shared objective of scaffolding the learner agent. Lastly, we discuss further possibilities for future work in the field of assisted reinforcement learning systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源