论文标题

通过问题回答的视觉概念学习的能力感知的课程

A Competence-aware Curriculum for Visual Concepts Learning via Question Answering

论文作者

Li, Qing, Huang, Siyuan, Hong, Yining, Zhu, Song-Chun

论文摘要

人类可以从简单到棘手的问题中逐步学习视觉概念。为了模仿这种有效的学习能力,我们建议以提问方式进行视觉概念学习能力感知的课程。具体而言,我们设计了一种神经符号概念学习者,用于学习视觉概念和一个多维项目响应理论(MIRT)模型,用于使用自适应课程指导学习过程。 MIRT有效地估算了从累积模型响应中每个学习步骤中的概念难度和模型能力。估计的概念难度和模型能力进一步用于选择最有利可图的培训样本。 CLEVR的实验结果表明,通过具有能力感知的课程,该建议的方法以卓越的数据效率和收敛速度实现了最先进的性能。具体而言,所提出的模型仅使用40%的训练数据,并且与其他最先进的方法相比,收敛速度快三倍。

Humans can progressively learn visual concepts from easy to hard questions. To mimic this efficient learning ability, we propose a competence-aware curriculum for visual concept learning in a question-answering manner. Specifically, we design a neural-symbolic concept learner for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT) model for guiding the learning process with an adaptive curriculum. The mIRT effectively estimates the concept difficulty and the model competence at each learning step from accumulated model responses. The estimated concept difficulty and model competence are further utilized to select the most profitable training samples. Experimental results on CLEVR show that with a competence-aware curriculum, the proposed method achieves state-of-the-art performances with superior data efficiency and convergence speed. Specifically, the proposed model only uses 40% of training data and converges three times faster compared with other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源