论文标题

一种新的固定点方法,用于在Quasi-$(2,β)$ - Banach空间中激进型功能方程的过度性能

A new fixed point approach to hyperstability of radical-type functional equations in quasi-$(2,β)$-Banach spaces

论文作者

EL-Fassi, Iz-iddine

论文摘要

本文的主要重点是定义准$(2,β)$ - Banach空间的概念,并在新空间中显示了一些属性,并在其帮助下并在某些自然假设下,我们证明了固定点定理[16,定理2.1]在Quasi-$(2,β)$ - BANACH空间的设置中仍然有效。 [12,定理1]在$ 2 $ -BANACH的空间中,到准 - $(2,β)$ - Banach Space。在下一部分中,我们给出了自由基型功能方程(1.2)的一般解决方案。此外,我们通过应用上述固定点定理来研究这些功能方程的高估性结果,在本文的最后,我们将得出一些后果。

The main focus of this paper is to define the notion of quasi-$(2,β)$-Banach space and show some properties in this new space, by help of it and under some natural assumptions, we prove that the fixed point theorem [16, Theorem 2.1] is still valid in the setting of quasi-$(2,β)$-Banach spaces, this is also an extension of the fixed point result of Brzdęk et al. [12, Theorem 1] in $2$-Banach spaces to quasi-$(2,β)$-Banach spaces. In the next part, we give a general solution of the radical-type functional equation (1.2). In addition, we study the hyperstability results for these functional equation by applying the aforementioned fixed point theorem, and at the end of this paper we will derive some consequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源