论文标题
对象姿势估计的学习取向分布
Learning Orientation Distributions for Object Pose Estimation
论文作者
论文摘要
为了使机器人在现实世界中进行健全的操作,他们应该意识到自己的不确定性。但是,大多数对象姿势估计方法返回对象姿势的单点估计值。在这项工作中,我们提出了两种估算对象方向分布的学习方法。我们的方法考虑了姿势估计中的不准确性以及对象对称性。我们的第一种方法从深度学习的特征回归到各向同性的宾汉分布,为非对称对象的方向分布估计提供了最佳性能。我们的第二种方法学会比较深层特征并生成非参数直方图分布。该方法在具有未知对称性的对象上提供了最佳性能,可以准确地对称对象和非对称对象进行建模,而无需任何对称注释。我们表明,这两种方法都可以用来增加现有的姿势估计量。我们的评估将我们的方法与多种不同类型对象的不确定性估计的大量基线方法进行了比较。
For robots to operate robustly in the real world, they should be aware of their uncertainty. However, most methods for object pose estimation return a single point estimate of the object's pose. In this work, we propose two learned methods for estimating a distribution over an object's orientation. Our methods take into account both the inaccuracies in the pose estimation as well as the object symmetries. Our first method, which regresses from deep learned features to an isotropic Bingham distribution, gives the best performance for orientation distribution estimation for non-symmetric objects. Our second method learns to compare deep features and generates a non-parameteric histogram distribution. This method gives the best performance on objects with unknown symmetries, accurately modeling both symmetric and non-symmetric objects, without any requirement of symmetry annotation. We show that both of these methods can be used to augment an existing pose estimator. Our evaluation compares our methods to a large number of baseline approaches for uncertainty estimation across a variety of different types of objects.