论文标题

WattScale:一种大规模的数据驱动方法,用于建筑物的能效分析

WattScale: A Data-driven Approach for Energy Efficiency Analytics of Buildings at Scale

论文作者

Iyengar, Srinivasan, Lee, Stephen, Irwin, David, Shenoy, Prashant, Weil, Benjamin

论文摘要

建筑物消耗了现代社会中总能源的40%以上,并提高能源效率可以大大减少我们的能源足迹。在本文中,我们提出\ texttt {wattscale},这是一种数据驱动的方法,可从城市或地区的大量建筑物中识别最不节能的建筑物。与以前的方法(例如使用点估计值的最小二乘相比,\ texttt {wattscale}使用贝叶斯推断,通过估计影响建筑物的参数的分布来捕获每日能量使用中的随机性。此外,它将它们与给定人群中的类似房屋进行了比较。 \ texttt {WattScale}还结合了一种故障检测算法,以识别效率低下的潜在原因。我们使用来自不同地理位置的地面真实数据来验证我们的方法,这些数据在各种环境中展示了其适用性。 \ texttt {wattScale}具有两种执行模式 - (i)个体和(ii)基于区域的执行模式,我们使用两个案例研究强调了这一点。对于单个执行模式,我们提出了一个包含> 10,000座建筑物的城市的结果,并表明一半以上的建筑物以一种或另一种方式效率低下,这表明能源改善措施具有巨大的潜力。此外,我们还提供了效率低下的可能原因,并发现41 \%,23.73 \%和0.51 \%的房屋分别具有较差的建筑包膜,加热和冷却系统故障。对于基于区域的执行模式,我们表明\ texttt {wattscale}可以扩展到美国数百万套房屋,这是由于最近的代表能量数据集的可用性。

Buildings consume over 40% of the total energy in modern societies, and improving their energy efficiency can significantly reduce our energy footprint. In this paper, we present \texttt{WattScale}, a data-driven approach to identify the least energy-efficient buildings from a large population of buildings in a city or a region. Unlike previous methods such as least-squares that use point estimates, \texttt{WattScale} uses Bayesian inference to capture the stochasticity in the daily energy usage by estimating the distribution of parameters that affect a building. Further, it compares them with similar homes in a given population. \texttt{WattScale} also incorporates a fault detection algorithm to identify the underlying causes of energy inefficiency. We validate our approach using ground truth data from different geographical locations, which showcases its applicability in various settings. \texttt{WattScale} has two execution modes -- (i) individual, and (ii) region-based, which we highlight using two case studies. For the individual execution mode, we present results from a city containing >10,000 buildings and show that more than half of the buildings are inefficient in one way or another indicating a significant potential from energy improvement measures. Additionally, we provide probable cause of inefficiency and find that 41\%, 23.73\%, and 0.51\% homes have poor building envelope, heating, and cooling system faults, respectively. For the region-based execution mode, we show that \texttt{WattScale} can be extended to millions of homes in the US due to the recent availability of representative energy datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源