论文标题
暴露于混合物的流行病学:使用或测试方法时,我们不能随意因果关系
Epidemiology of exposure to mixtures: we cant be casual about causality when using or testing methods
论文作者
论文摘要
背景:对分析暴露混合物对健康的影响的方法越来越兴趣。一个关键问题是如何同时分析混合物的高度共线成分,这可能会产生诸如通过共曝光和共曝光扩增偏置(CAB)混淆的问题。通常使用合成数据的新型混合方法的评估对于它们的最终效用至关重要。目标:本文旨在回答两个问题。因果模型如何为统计模型的解释和用于测试它们的合成数据的创建提供信息?新型混合物方法是否易于驾驶室?方法:我们使用定向的无环图(DAG)和线性模型来得出模型参数的封闭形式解决方案,以检查基本因果假设如何影响模型结果的解释。结果:根据假定的因果结构,由统计模型估计的相同的Beta系数可以具有不同的解释。同样,用于模拟数据的方法可能对基础DAG(反之亦然)具有影响,因此可以通过分析方法估算参数的识别。我们证明,可以重现线性回归结果的方法,例如贝叶斯内核机回归和新的Quantile G-Compontain方法,将受到CAB的约束。但是,在某些条件下,对混合物的总体影响的估计不受CAB的影响,甚至减少了不受控制的偏差。讨论:正如DAGS编码了允许识别阻断分析偏差所需的可变控制的先验主题知识一样,我们建议明确识别创建的综合数据的基础DAG,以测试统计混合物方法。混合物的总效应的估计是一个重要但相对不受欢迎的主题,需要进一步研究。
Background: There is increasing interest in approaches for analyzing the effect of exposure mixtures on health. A key issue is how to simultaneously analyze often highly collinear components of the mixture, which can create problems such as confounding by co-exposure and co-exposure amplification bias (CAB). Evaluation of novel mixtures methods, typically using synthetic data, is critical to their ultimate utility. Objectives: This paper aims to answer two questions. How do causal models inform the interpretation of statistical models and the creation of synthetic data used to test them? Are novel mixtures methods susceptible to CAB? Methods: We use directed acyclic graphs (DAGs) and linear models to derive closed form solutions for model parameters to examine how underlying causal assumptions affect the interpretation of model results. Results: The same beta coefficients estimated by a statistical model can have different interpretations depending on the assumed causal structure. Similarly, the method used to simulate data can have implications for the underlying DAG (and vice versa), and therefore the identification of the parameter being estimated with an analytic approach. We demonstrate that methods that can reproduce results of linear regression, such as Bayesian kernel machine regression and the new quantile g-computation approach, will be subject to CAB. However, under some conditions, estimates of an overall effect of the mixture is not subject to CAB and even has reduced uncontrolled bias. Discussion: Just as DAGs encode a priori subject matter knowledge allowing identification of variable control needed to block analytic bias, we recommend explicitly identifying DAGs underlying synthetic data created to test statistical mixtures approaches. Estimates of the total effect of a mixture is an important but relatively underexplored topic that warrants further investigation.