论文标题

电磁淋浴的聚类和与液体氩时间投影室中图神经网络的粒子相互作用

Clustering of Electromagnetic Showers and Particle Interactions with Graph Neural Networks in Liquid Argon Time Projection Chambers Data

论文作者

Drielsma, Francois, Lin, Qing, de Soux, Pierre Côte, Dominé, Laura, Itay, Ran, Koh, Dae Heun, Nelson, Bradley J., Terao, Kazuhiro, Tsang, Ka Vang, Usher, Tracy L.

论文摘要

液体氩时间投影室(LARTPC)是一类检测器,它们在其敏感体积内产生高分辨率的图像。在这些图像中,将不同的粒子聚集到上层建筑中对于当前和未来的中微子物理计划至关重要。电磁(EM)活性通常表现出具有不同形态和方向的空间脱离片段,这些片段在使用传统算法有效地组装有挑战性。同样,在检测器中彼此之间彼此去除的颗粒可能起源于共同的相互作用。近年来开发了图神经网络(GNN),以找到嵌入在任意空间中的对象之间的相关性。图粒子聚合器(Grappa)首先利用GNN来预测EM淋浴片段的邻接矩阵,并确定阵雨的起源,即主片段。在Pilarnet公共LARTPC模拟数据集上,该算法达到了淋浴聚类的精度,其特征在于平均调整后的RAND指数(ARI)为97.8%,主要识别精度为99.8%。它产生的相对淋浴能分辨率为$(4.1+1.4/\ sqrt {e(\ text {gev})})\,\%$和$(2.1/\ sqrt {e(\ text {gev}})} $(2.1/\ sqrt {然后将优化的算法应用于将粒子实例聚集到相互作用的相关任务中,并使$ \ sim \ Mathcal {O}(O}(O}(1)\,M^{ - 3} $相互作用密度的平均ARI为99.2%。

Liquid Argon Time Projection Chambers (LArTPCs) are a class of detectors that produce high resolution images of charged particles within their sensitive volume. In these images, the clustering of distinct particles into superstructures is of central importance to the current and future neutrino physics program. Electromagnetic (EM) activity typically exhibits spatially detached fragments of varying morphology and orientation that are challenging to efficiently assemble using traditional algorithms. Similarly, particles that are spatially removed from each other in the detector may originate from a common interaction. Graph Neural Networks (GNNs) were developed in recent years to find correlations between objects embedded in an arbitrary space. The Graph Particle Aggregator (GrapPA) first leverages GNNs to predict the adjacency matrix of EM shower fragments and to identify the origin of showers, i.e. primary fragments. On the PILArNet public LArTPC simulation dataset, the algorithm achieves achieves a shower clustering accuracy characterized by a mean adjusted Rand index (ARI) of 97.8 % and a primary identification accuracy of 99.8 %. It yields a relative shower energy resolution of $(4.1+1.4/\sqrt{E (\text{GeV})})\,\%$ and a shower direction resolution of $(2.1/\sqrt{E(\text{GeV})})^{\circ}$. The optimized algorithm is then applied to the related task of clustering particle instances into interactions and yields a mean ARI of 99.2 % for an interaction density of $\sim\mathcal{O}(1)\,m^{-3}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源