论文标题

有效的动力学蒙特卡洛,可通过纳米孔研究分析物捕获:瞬态,边界条件和时间依赖性场

An efficient Kinetic Monte Carlo to study analyte capture by a nanopore: Transients, boundary conditions and time-dependent fields

论文作者

Qiao, Le, Ignacio, Maxime, Slater, Gary W.

论文摘要

为了更好地理解纳米孔的捕获过程,我们引入了有效的动力学蒙特卡洛(KMC)算法,该算法可以通过映射3D球形对称系统的点样粒子的动态来模拟长时间和大型系统尺寸,从而在1D偏置的随机步行中。我们的算法恢复了稳态分析解决方案,并使我们能够研究时间依赖性过程,例如瞬变。仿真结果表明,孔附近的稳态耗竭区仅比孔径大,并且在较高的场强度下变窄。结果,到达稳态的时间比清空捕获半径$λ_e$的区域所需的时间要小得多。当样品储层具有有限的大小时,第二次耗尽区域会从外壁向内传播,并且当捕获率达到捕获半径$λ_e$时开始降低。我们还注意到,孔附近的电场的平坦度通常被忽略,它会引起交通堵塞,可以将瞬态时间增加几个数量级。最后,我们提出了一种新的概念验证方案,以使用随时间变化的字段分开两个相同迁移率但不同扩散系数的分析物。

To better understand the capture process by a nanopore, we introduce an efficient Kinetic Monte Carlo (KMC) algorithm that can simulate long times and large system sizes by mapping the dynamic of a point-like particle in a 3D spherically symmetric system onto the 1D biased random walk. Our algorithm recovers the steady-state analytical solution and allows us to study time-dependent processes such as transients. Simulation results show that the steady-state depletion zone near pore is barely larger than the pore radius and narrows at higher field intensities; as a result, the time to reach steady-state is much smaller than the time required to empty a zone of the size of the capture radius $λ_e$. When the sample reservoir has a finite size, a second depletion region propagates inward from the outer wall, and the capture rate starts decreasing when it reaches the capture radius $λ_e$. We also note that the flatness of the electric field near the pore, which is often neglected, induces a traffic jam that can increase the transient time by several orders of magnitude. Finally, we propose a new proof-of-concept scheme to separate two analytes of the same mobility but different diffusion coefficients using time-varying fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源