论文标题

在图像分类中学习排序的集合权重

Learning ordered pooling weights in image classification

论文作者

Forcen, J. I., Pagola, Miguel, Barrenechea, Edurne, Bustince, Humberto

论文摘要

空间合并是计算机视觉系统(例如卷积神经网络或词具方法)的重要一步。空间合并目的是将相邻的描述符组合,以获得给定区域(本地或全局)的单个描述符。换句话说,所得组合的矢量必须尽可能地判别,同时消除无关紧要且令人困惑的细节。最大值和平均值是合并步骤中使用的最常见的聚合功能。为了改善相关信息的聚合而不降低其图像分类的判别能力,我们基于有序加权平均(OWA)聚合操作员提出了一个简单但有效的方案。我们提出了一种在单词框架和卷积神经网络中学习OWA聚合操作员的权重的方法,并提供了广泛的评估,表明基于OWA的Plosing Plosing Estrorming Estrorms Extrorments经典聚合操作员。

Spatial pooling is an important step in computer vision systems like Convolutional Neural Networks or the Bag-of-Words method. The spatial pooling purpose is to combine neighbouring descriptors to obtain a single descriptor for a given region (local or global). The resultant combined vector must be as discriminant as possible, in other words, must contain relevant information, while removing irrelevant and confusing details. Maximum and average are the most common aggregation functions used in the pooling step. To improve the aggregation of relevant information without degrading their discriminative power for image classification, we introduce a simple but effective scheme based on Ordered Weighted Average (OWA) aggregation operators. We present a method to learn the weights of the OWA aggregation operator in a Bag-of-Words framework and in Convolutional Neural Networks, and provide an extensive evaluation showing that OWA based pooling outperforms classical aggregation operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源