论文标题
稀疏地质特征的本地化和映射,没有直线飞机系统
Localization and Mapping of Sparse Geologic Features with Unpiloted Aircraft Systems
论文作者
论文摘要
机器人映射在许多涉及环境调查的科学应用中具有吸引力。本文介绍了一个用于定位和映射稀疏的表面特征的系统,例如不稳定的平衡岩石(PBR),其几何脆弱参数为地震过程和景观发展提供了有价值的信息。由于这种地貌问题是测试域,我们使用配备有飞行控制器,GPS模块,立体声摄像头和板载计算机的未移动航空车辆(UAV)进行了高度高程的割草机搜索模式。一旦通过深度神经网络实时检测到潜在的PBR目标,我们就通过应用Kalman滤波器在图像坐标中跟踪其边界框,该滤波器将深度学习检测与Kanade-Lucas-Tomasi(KLT)跟踪融合在一起。该目标使用深度过滤位于世界坐标中,其中一组3D点从不同的相机角度通过对象边界框过滤。 3D点还为目标形状提供了强大的先验,该目标形状用于使用RGBD SLAM密切映射目标的无人机路径。目标映射后,UAS恢复了割草机搜索模式,以找到和映射下一个目标。
Robotic mapping is attractive in many scientific applications that involve environmental surveys. This paper presents a system for localization and mapping of sparsely distributed surface features such as precariously balanced rocks (PBRs), whose geometric fragility parameters provide valuable information on earthquake processes and landscape development. With this geomorphologic problem as the test domain, we carry out a lawn-mower search pattern from a high elevation using an Unpiloted Aerial Vehicle (UAV) equipped with a flight controller, GPS module, stereo camera, and onboard computer. Once a potential PBR target is detected by a deep neural network in real time, we track its bounding box in the image coordinates by applying a Kalman filter that fuses the deep learning detection with Kanade-Lucas-Tomasi (KLT) tracking. The target is localized in world coordinates using depth filtering where a set of 3D points are filtered by object bounding boxes from different camera perspectives. The 3D points also provide a strong prior on target shape, which is used for UAV path planning to closely map the target using RGBD SLAM. After target mapping, the UAS resumes the lawn-mower search pattern to locate and map the next target.