论文标题
关于莫德尔的问题
On a question of Mordell
论文作者
论文摘要
我们对找到$ x^3+y^3+z^3 = k $的整数解决方案的方法做出了一些改进,以$ k $的小值。我们对慈善机构Engine的500,000个志愿PC的全球计算网格进行了这些改进,并找到了几个$ K $的新表示形式,包括$ k = 3 $和$ k = 42 $。这完成了Miller和Woollett于1954年开始的搜索,并解决了Mordell在1953年提出的挑战。
We make several improvements to methods for finding integer solutions to $x^3+y^3+z^3=k$ for small values of $k$. We implemented these improvements on Charity Engine's global compute grid of 500,000 volunteer PCs and found new representations for several values of $k$, including $k=3$ and $k=42$. This completes the search begun by Miller and Woollett in 1954 and resolves a challenge posed by Mordell in 1953.