论文标题
在带有逻辑型抑制作用的凯勒 - 塞格系统的爆炸结果中接近最佳性能
Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening
论文作者
论文摘要
Neumann Neumann初始值问题的非阴性解决方案\ begin {align} \ label {prob:star} \ tag {$ \ star $} \ begin {case} u_t =Δu-\ nabla \ cdot(u \ nabla v) + \ nabla v) + \ nabla v) m(t) + u,\ quad \ edline m(t)= \ frac1 {|ω|} \int_Ω 0 $和$κ> 2 $。 在目前的工作中,我们表明指数$κ= 2 $实际上在四维环境中至关重要。 More precisely, if \begin{alignat*}{3} \qquad n &\geq 4, &&\quad κ\in (1, 2) \quad &&\text{and} \quad μ> 0 \\\\ \text{or}\qquad n &\geq 5, &&\quad κ= 2 \quad在\ left(0,\ frac {n-4} {n-4} {n} \ right)中,\ end \ end {alignat*}的text {and} \quadμ\ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in \。 c^0(\Int_ΩU_0= m_0 $,\ eqref {prob {prob:star}在有限的时间内吹来,c^0(\ edlineω)$。此外,在3D中,我们获得了$κ\ in(1,\ frac32)$(和$λ\ geq 0 $,$μ> 0 $)的有限时间爆炸。 作为我们分析的角石,对于某些初始数据,我们证明质量积累功能$ W(s,t)= \ int_0^{\ sqrt [n] {s}}}ρ^{n-1} u(ρ,ρ,t)然后,我们通过显示适当选择的初始数据,$ s_0 $和$γ$的功能$ ϕ(t)= \ int_0^{s_0} s^{ - γ{ - γ}(s_0- s)w(s,s,t)$来获得$ u $的有限时间爆炸。
Nonnegative solutions of the Neumann initial-boundary value problem for the chemotaxis system \begin{align}\label{prob:star}\tag{$\star$} \begin{cases} u_t = Δu - \nabla \cdot (u \nabla v) + λu - μu^κ, \\\\ 0 = Δv - \overline m(t) + u, \quad \overline m(t) = \frac1{|Ω|} \int_Ωu(\cdot, t) \end{cases} \end{align} in smooth bounded domains $Ω\subset \mathbb R^n$, $n \ge 1$, are known to be global-in-time if $λ\geq 0$, $μ> 0$ and $κ> 2$. In the present work, we show that the exponent $κ= 2$ is actually critical in the four- and higher dimensional setting. More precisely, if \begin{alignat*}{3} \qquad n &\geq 4, &&\quad κ\in (1, 2) \quad &&\text{and} \quad μ> 0 \\\\ \text{or}\qquad n &\geq 5, &&\quad κ= 2 \quad &&\text{and} \quad μ\in \left(0, \frac{n-4}{n}\right), \end{alignat*} for balls $Ω\subset \mathbb R^n$ and parameters $λ\geq 0$, $m_0 > 0$, we construct a nonnegative initial datum $u_0 \in C^0(\overline Ω)$ with $\int_Ωu_0 = m_0$ for which the corresponding solution $(u, v)$ of \eqref{prob:star} blows up in finite time. Moreover, in 3D, we obtain finite-time blow-up for $κ\in (1, \frac32)$ (and $λ\geq 0$, $μ> 0$). As the corner stone of our analysis, for certain initial data, we prove that the mass accumulation function $w(s, t) = \int_0^{\sqrt[n]{s}} ρ^{n-1} u(ρ, t) \,\mathrm dρ$ fulfills the estimate $w_s \le \frac{w}{s}$. Using this information, we then obtain finite-time blow-up of $u$ by showing that for suitably chosen initial data, $s_0$ and $γ$, the function $ϕ(t) = \int_0^{s_0} s^{-γ} (s_0 - s) w(s, t)$ cannot exist globally.