论文标题
从RS代码和扩展度2的BCH代码纠正纠缠量量错误误差2
Entanglement-Assisted Quantum Error Correcting Codes From RS Codes and BCH Codes with Extension Degree 2
论文作者
论文摘要
在这项工作中,考虑了由芦苇 - 固体代码和BCH代码构建的纠缠辅助量子误差校正代码(EAQECC)。它提供了来自任何芦苇 - 固体代码的EAQECC参数的完整而明确的公式,用于Hermitian指标,以及来自Euclidean和Hermitian Metric的任何扩展学位$ 2 $的BCH代码和连续的Cyclotomic Cosets。这项工作的主要任务是计算$ c $的完全通用公式,即所需最大纠缠量子状态的最小数量。
Entanglement-assisted quantum error correcting codes (EAQECCs) constructed from Reed-Solomon codes and BCH codes are considered in this work. It is provided a complete and explicit formula for the parameters of EAQECCs coming from any Reed-Solomon code, for the Hermitian metric, and from any BCH code with extension degree $2$ and consecutive cyclotomic cosets, for both the Euclidean and the Hermitian metric. The main task in this work is the computation of a completely general formula for $c$, the minimum number of required maximally entangled quantum states.