论文标题
有机狄拉克电子系统α-(bedt-tsef)的运输属性$ _ 2 $ i $ _3 $
Transport properties of organic Dirac electron system α-(BEDT-TSeF)$_2$I$_3$
论文作者
论文摘要
由$α$ - (bedt-tsef)$ _ 2 $ i $ _3 $在低温($ t $)下的绝缘行为的动机,我们首先根据环境压力下的30 K结构数据进行了第一原理计算,我们在环境压力下进行了晶体结构数据,我们构建了一种使用最大本地化的Wannier函数的二维有效模型。作为绝缘行为的可能原因,我们研究了现场库仑相互作用$ u $和自旋轨道相互作用(SOI)的影响,并使用Hartree近似和$ t $ -matrix近似来研究电子状态和传输系数。有限$ t $的计算表明,由于现场库仑相互作用,出现了自旋订购的大型迪拉克电子(SMD)。当SMD阶段以$α$ - (BET)$ _ 2 $ i $ _3 $出现时,我们对$ U $和SOI的异常竞争效应有兴趣,我们调查了对电子状态和电导率的这些贡献。 SMD不是常规的旋转顺序,但它表现出旋转 - 瓦利大厅的效果。在存在自旋顺序差距的情况下,直流电阻率增加,并且在$ t $ t $降低的情况下表现出负磁磁性。电荷密度在出现这种绝缘行为的$ t $以下几乎不会变化。但是,当仅考虑SOI时,状态将变为拓扑绝缘体阶段,并且在相当低的$ t $的边缘传导中,电阻率饱和。在考虑SMD和SOI时,SOI抑制了旋转顺序差距,并且左右DIRAC锥体上开放了不同尺寸的缝隙。这种相变会导致微波电导率的明显变化,例如不连续的跳跃和峰结构。
Motivated by the insulating behavior of $α$-(BEDT-TSeF)$_2$I$_3$ at low temperatures ($T$'s), we first performed first-principles calculations based on the crystal structural data at 30 K under ambient pressure, and we constructed a two-dimensional effective model using maximally localized Wannier functions. As possible causes of the insulating behavior, we studied the effects of the on-site Coulomb interaction $U$ and spin-orbit interaction (SOI) by investigating the electronic state and the transport coefficient using the Hartree approximation and the $T$-matrix approximation. The calculations at a finite $T$ demonstrated that a spin-ordered massive Dirac electron (SMD) appeared due to the on-site Coulomb interaction. We had an interest in the anomalous competitive effect with $U$ and SOI when the SMD phase is present in $α$-(BETS)$_2$I$_3$, and we investigated these contributions to the electronic state and conductivity. The SMD is not a conventional spin order, but it exhibits the spin-valley Hall effect. Direct current resistivity in the presence of a spin order gap increased divergently and exhibited negative magnetoresistance in the low $T$ region with decreasing $T$. The charge density hardly changed below and above the $T$ at which this insulating behavior appeared. However, when considering the SOI alone, the state changed to a topological insulator phase, and the electrical resistivity is saturated by edge conduction at quite low $T$. When considering both the SMD and the SOI, the spin order gap was suppressed by the SOI, and gaps with different sizes opened in the left and right Dirac cones. This phase transition leads to distinct changes in microwave conductivity, such as a discontinuous jump and a peak structure.