论文标题

量子合奏进行分类

Quantum Ensemble for Classification

论文作者

Macaluso, Antonio, Clissa, Luca, Lodi, Stefano, Sartori, Claudio

论文摘要

提高机器学习性能的强大方法是构建一个结合多个模型预测的合奏。集合方法通常比组成它们的单个分类器更准确和较低,但在记忆和计算时间方面有很高的要求。实际上,通常采用大量替代算法,每个算法都需要查询所有可用的数据。 我们提出了一种新的量子算法,该算法利用量子叠加,纠缠和干扰来构建分类模型的合奏。多亏了叠加中的几个量子轨迹的产生,我们获得了$ b $ the量子状态的转换,该量子状态仅编码仅$ log \ left(b \ right)$操作中的训练集。这意味着集合大小的指数增长,同时线性地增加通讯电路的深度。此外,在考虑算法的整体成本时,我们表明,单个弱分类器的训练会加上整体时间复杂性,而不是倍增,因为它通常以经典的集合方法发生。 我们还在现实世界数据集上展示了小规模的实验,定义了余弦分类器的量子版本,并使用IBM Qiskit环境来展示该算法的工作原理。

A powerful way to improve performance in machine learning is to construct an ensemble that combines the predictions of multiple models. Ensemble methods are often much more accurate and lower variance than the individual classifiers that make them up but have high requirements in terms of memory and computational time. In fact, a large number of alternative algorithms is usually adopted, each requiring to query all available data. We propose a new quantum algorithm that exploits quantum superposition, entanglement and interference to build an ensemble of classification models. Thanks to the generation of the several quantum trajectories in superposition, we obtain $B$ transformations of the quantum state which encodes the training set in only $log\left(B\right)$ operations. This implies exponential growth of the ensemble size while increasing linearly the depth of the correspondent circuit. Furthermore, when considering the overall cost of the algorithm, we show that the training of a single weak classifier impacts additively the overall time complexity rather than multiplicatively, as it usually happens in classical ensemble methods. We also present small-scale experiments on real-world datasets, defining a quantum version of the cosine classifier and using the IBM qiskit environment to show how the algorithms work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源