论文标题

以人为中心的协作机器人进行深入的协作机器人

Human-centered collaborative robots with deep reinforcement learning

论文作者

Ghadirzadeh, Ali, Chen, Xi, Yin, Wenjie, Yi, Zhengrong, Björkman, Mårten, Kragic, Danica

论文摘要

我们为以人为中心的协作系统提出了一个基于加强学习的框架。该框架是积极主动的,可以平衡及时行动的好处,并通过最大程度地减少完成任务所花费的时间来采取不当行动的风险。该框架是以一种无监督的方式端到端学习的,以综合的方式解决了不确定性和决策。该框架被证明可以在包装的示例任务上提供与替代方案的示例任务,与使用监督的学习独立学习感知和决策系统的替代方案相比。提出的方法的最重要好处是,它可以快速适应新的人类伴侣和任务,因为避免了运动数据的繁琐注释并在线进行学习。

We present a reinforcement learning based framework for human-centered collaborative systems. The framework is proactive and balances the benefits of timely actions with the risk of taking improper actions by minimizing the total time spent to complete the task. The framework is learned end-to-end in an unsupervised fashion addressing the perception uncertainties and decision making in an integrated manner. The framework is shown to provide more fluent coordination between human and robot partners on an example task of packaging compared to alternatives for which perception and decision-making systems are learned independently, using supervised learning. The foremost benefit of the proposed approach is that it allows for fast adaptation to new human partners and tasks since tedious annotation of motion data is avoided and the learning is performed on-line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源