论文标题
用于空间图的dehn着色和顶点条件的分类
Palettes of Dehn colorings for spatial graphs and the classification of vertex conditions
论文作者
论文摘要
在本文中,我们研究了空间图图的dehn着色,并将顶点条件分类为等效的调色板。我们提供了一些空间图的示例,可以通过选择合适的调色板来区分Dehn颜色的数量。此外,我们还讨论了广义版的调色板,该版本定义为打结理论三元杂音群和空间图图的区域色素。
In this paper, we study Dehn colorings of spatial graph diagrams, and classify the vertex conditions, equivalently the palettes. We give some example of spatial graphs which can be distinguished by the number of Dehn colorings with selecting an appropriate palette. Furthermore, we also discuss the generalized version of palettes, which is defined for knot-theoretic ternary-quasigroups and region colorings of spatial graph diagrams.