论文标题
比较Weil限制组的局部Langlands对应的深度(与Jessica Fintzen的附录)
Comparison of the depths on both sides of the local Langlands correspondence for Weil-restricted groups (with appendix by Jessica Fintzen)
论文作者
论文摘要
令$ e/f $为非Archimedean本地领域的有限和Galois扩展。令$ g $为一个连接的还原组,定义在$ e $上,让$ m:= \ mathfrak {r} _ {e/f} \,g $是通过量标量限制获得的$ f $的还原组。我们研究深度和增强的当地兰兰兹信件,在从$ g(e)$到$ m(f)$的过渡中。我们为Weil限制组获得了深度比较公式。
Let $E/F$ be a finite and Galois extension of non-archimedean local fields. Let $G$ be a connected reductive group defined over $E$ and let $M: = \mathfrak{R}_{E/F}\, G$ be the reductive group over $F$ obtained by Weil restriction of scalars. We investigate depth, and the enhanced local Langlands correspondence, in the transition from $G(E)$ to $M(F)$. We obtain a depth-comparison formula for Weil-restricted groups.