论文标题
高维贝叶斯优化,通过主成分分析有助于
High Dimensional Bayesian Optimization Assisted by Principal Component Analysis
论文作者
论文摘要
贝叶斯优化(BO)是一种替代辅助全球优化技术,已成功应用于各个领域,例如自动化机器学习和设计优化。 BO技术建立在所谓的填充标准和高斯过程回归(GPR)的基础上,随着搜索空间的尺寸的增加,BO技术具有实质性的计算复杂性和阻碍收敛速度。扩大BO的高维优化问题仍然是一项具有挑战性的任务。在本文中,我们建议通过将BO的可扩展性与主成分分析(PCA)杂交,从而导致新型PCA辅助BO(PCA-BO)算法。具体而言,PCA过程从运行期间所有评估点学习了线性转换,并根据评估点的可变性选择转换空间中的尺寸。然后,我们构建了GPR模型,并在选定尺寸跨越的空间中填充标准。我们根据可可基准框架的多模式问题的经验收敛率和CPU时间评估了PCA-BO的性能。实验结果表明,PCA-BO可以有效地减少在高维问题上产生的CPU时间,并在适当的全球结构方面保持收敛速度。因此,PCA-BO在收敛速率和计算效率之间提供了令人满意的权衡,以开放新的方法,以从高维数值优化的BO方法中受益。
Bayesian Optimization (BO) is a surrogate-assisted global optimization technique that has been successfully applied in various fields, e.g., automated machine learning and design optimization. Built upon a so-called infill-criterion and Gaussian Process regression (GPR), the BO technique suffers from a substantial computational complexity and hampered convergence rate as the dimension of the search spaces increases. Scaling up BO for high-dimensional optimization problems remains a challenging task. In this paper, we propose to tackle the scalability of BO by hybridizing it with a Principal Component Analysis (PCA), resulting in a novel PCA-assisted BO (PCA-BO) algorithm. Specifically, the PCA procedure learns a linear transformation from all the evaluated points during the run and selects dimensions in the transformed space according to the variability of evaluated points. We then construct the GPR model, and the infill-criterion in the space spanned by the selected dimensions. We assess the performance of our PCA-BO in terms of the empirical convergence rate and CPU time on multi-modal problems from the COCO benchmark framework. The experimental results show that PCA-BO can effectively reduce the CPU time incurred on high-dimensional problems, and maintains the convergence rate on problems with an adequate global structure. PCA-BO therefore provides a satisfactory trade-off between the convergence rate and computational efficiency opening new ways to benefit from the strength of BO approaches in high dimensional numerical optimization.