论文标题

设计有利于可解释的机器人行为的环境

Designing Environments Conducive to Interpretable Robot Behavior

论文作者

Kulkarni, Anagha, Sreedharan, Sarath, Keren, Sarah, Chakraborti, Tathagata, Smith, David, Kambhampati, Subbarao

论文摘要

设计能够产生可解释行为的机器人是实现有效的人类机器人协作的先决条件。这意味着机器人需要能够产生与人类期望保持一致的行为,并在需要时为循环中的人提供解释。但是,在任意环境中表现出这种行为对于机器人来说可能非常昂贵,在某些情况下,机器人甚至可能无法表现出预期的行为。给定的结构化环境(例如仓库和餐馆),可以设计环境,以提高机器人行为的可解释性或塑造人类对机器人行为的期望。在本文中,我们调查了环境设计的机会和局限性,作为促进一种可解释行为的工具 - 在文献中被称为可阐明行为。我们制定了一个新颖的环境设计框架,该框架考虑了多个任务和时间范围内的设计。此外,我们探讨了可阐明行为的纵向以及设计成本与在时间范围内产生可阐明行为的成本之间产生的权衡。

Designing robots capable of generating interpretable behavior is a prerequisite for achieving effective human-robot collaboration. This means that the robots need to be capable of generating behavior that aligns with human expectations and, when required, provide explanations to the humans in the loop. However, exhibiting such behavior in arbitrary environments could be quite expensive for robots, and in some cases, the robot may not even be able to exhibit the expected behavior. Given structured environments (like warehouses and restaurants), it may be possible to design the environment so as to boost the interpretability of the robot's behavior or to shape the human's expectations of the robot's behavior. In this paper, we investigate the opportunities and limitations of environment design as a tool to promote a type of interpretable behavior -- known in the literature as explicable behavior. We formulate a novel environment design framework that considers design over multiple tasks and over a time horizon. In addition, we explore the longitudinal aspect of explicable behavior and the trade-off that arises between the cost of design and the cost of generating explicable behavior over a time horizon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源