论文标题

使用多参数MRI的多分辨率超级学习者用于前列腺癌的体素分类

Multi-resolution Super Learner for Voxel-wise Classification of Prostate Cancer Using Multi-parametric MRI

论文作者

Jin, Jin, Zhang, Lin, Leng, Ethan, Metzger, Gregory J., Koopmeiners, Joseph S.

论文摘要

尽管当前的研究表明,多参数MRI(MPMRI)在诊断前列腺癌(PCA)中的重要性,但如何将MPMRI数据的特定结构(例如区域异质性和体内间相关性)在受试者内部进行。本文提出了一种基于机器学习的方法,以考虑数据的独特结构,以改善体素PCA分类。我们提出了一种多分辨率建模方法来说明区域异质性,在该方法中,使用超级学习者将以多种分辨率在本地培训的基础学习者结合在一起,并通过有效的空间高斯核平滑来解释素间相关性。该方法具有灵活性,因为超级学习者框架允许将任何分类器作为基础学习者实现,并且可以轻松扩展到将癌症分类为更多子类别。我们描述了二进制PCA状态的详细分类算法以及PCA的序数临床意义,为此,实施了加权似然方法以增强对较不普遍的癌症类别的检测。我们说明了通过模拟和对体内数据的应用来说明所提出的方法比常规建模和机器学习方法的优势。

While current research has shown the importance of Multi-parametric MRI (mpMRI) in diagnosing prostate cancer (PCa), further investigation is needed for how to incorporate the specific structures of the mpMRI data, such as the regional heterogeneity and between-voxel correlation within a subject. This paper proposes a machine learning-based method for improved voxel-wise PCa classification by taking into account the unique structures of the data. We propose a multi-resolution modeling approach to account for regional heterogeneity, where base learners trained locally at multiple resolutions are combined using the super learner, and account for between-voxel correlation by efficient spatial Gaussian kernel smoothing. The method is flexible in that the super learner framework allows implementation of any classifier as the base learner, and can be easily extended to classifying cancer into more sub-categories. We describe detailed classification algorithm for the binary PCa status, as well as the ordinal clinical significance of PCa for which a weighted likelihood approach is implemented to enhance the detection of the less prevalent cancer categories. We illustrate the advantages of the proposed approach over conventional modeling and machine learning approaches through simulations and application to in vivo data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源