论文标题

关于学习表示的线性可识别性

On Linear Identifiability of Learned Representations

论文作者

Roeder, Geoffrey, Metz, Luke, Kingma, Diederik P.

论文摘要

可识别性是统计模型的理想属性:这意味着可以在给定足够的计算资源和数据的情况下估算到任何所需的精度。我们在表示学习的背景下研究可识别性:发现相对于某些下游任务最佳的非线性数据表示。当将参数化为深神经网络时,这种表示功能通常在参数空间中缺乏可识别性,因为它们被设计过度参数化。在本文的基础上,基于非线性ICA的最新进展,我们旨在通过表明大型判别模型的一家族可以在功能空间中可识别,直至线性不确定性。从这种意义上讲,许多用于在各种领域中学习的模型都可以识别,包括文本,图像和音频,出版时最新的。我们为线性可识别性提供了足够的条件,并为模拟和现实世界数据提供了结果的经验支持。

Identifiability is a desirable property of a statistical model: it implies that the true model parameters may be estimated to any desired precision, given sufficient computational resources and data. We study identifiability in the context of representation learning: discovering nonlinear data representations that are optimal with respect to some downstream task. When parameterized as deep neural networks, such representation functions typically lack identifiability in parameter space, because they are overparameterized by design. In this paper, building on recent advances in nonlinear ICA, we aim to rehabilitate identifiability by showing that a large family of discriminative models are in fact identifiable in function space, up to a linear indeterminacy. Many models for representation learning in a wide variety of domains have been identifiable in this sense, including text, images and audio, state-of-the-art at time of publication. We derive sufficient conditions for linear identifiability and provide empirical support for the result on both simulated and real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源