论文标题

一种预警方法,用于监视COVID-19活动,并在接近实时进行多个数字痕迹

An Early Warning Approach to Monitor COVID-19 Activity with Multiple Digital Traces in Near Real-Time

论文作者

Kogan, Nicole E., Clemente, Leonardo, Liautaud, Parker, Kaashoek, Justin, Link, Nicholas B., Nguyen, Andre T., Lu, Fred S., Huybers, Peter, Resch, Bernd, Havas, Clemens, Petutschnig, Andreas, Davis, Jessica, Chinazzi, Matteo, Mustafa, Backtosch, Hanage, William P., Vespignani, Alessandro, Santillana, Mauricio

论文摘要

非药物干预措施(NPI)对于在美国(美国)遏制Covid-19至关重要。因此,在同时达到的敏感性仍然高水平的情况下,通过逐步开放美国通过分阶段的重新开放,将NPI放松,可能导致新的流行波浪。这要求建立共同的19号预警系统。在这里,我们评估了多个数字数据流,作为在2020年1月至6月之间增加或降低状态级美国COVID-19活动的预警指标。我们估计,使用一个简单的贝叶斯模型,我们估计每个数据流中急剧变化的时机,该模型几乎实时计算了实时的指数增长或衰减的可能性。对社交网络微博,Internet搜索,护理点医疗软件以及跨群体机械模型以及由智能温度计网络捕获的发烧异常的分析,大约2-3周,在确认的COVID-19案件和3-4周中,在Cobleable Growth in Cobleable Eversy cobles cobles cobles and vers vers vers vers vervids vers vers vervids vers vers vervids vers vers vervids vers vers vervids vers vers vers vervids vers vervids vers vervids vers vervids avervevide,smart温度计网络捕获的发烧异常。我们进一步观察到NPI实施后5-6周确认的病例和死亡中的指数衰减,这是通过手机的匿名和汇总人类流动性数据来衡量的。最后,我们为多个数据流中的指数增长提出了一个综合指标,这可能有助于为未来的Covid-19-19爆发开发预警系统。这些努力代表了最初的探索框架,并且需要继续研究数字指标的预测能力以及统计方法的进一步发展。

Non-pharmaceutical interventions (NPIs) have been crucial in curbing COVID-19 in the United States (US). Consequently, relaxing NPIs through a phased re-opening of the US amid still-high levels of COVID-19 susceptibility could lead to new epidemic waves. This calls for a COVID-19 early warning system. Here we evaluate multiple digital data streams as early warning indicators of increasing or decreasing state-level US COVID-19 activity between January and June 2020. We estimate the timing of sharp changes in each data stream using a simple Bayesian model that calculates in near real-time the probability of exponential growth or decay. Analysis of COVID-19-related activity on social network microblogs, Internet searches, point-of-care medical software, and a metapopulation mechanistic model, as well as fever anomalies captured by smart thermometer networks, shows exponential growth roughly 2-3 weeks prior to comparable growth in confirmed COVID-19 cases and 3-4 weeks prior to comparable growth in COVID-19 deaths across the US over the last 6 months. We further observe exponential decay in confirmed cases and deaths 5-6 weeks after implementation of NPIs, as measured by anonymized and aggregated human mobility data from mobile phones. Finally, we propose a combined indicator for exponential growth in multiple data streams that may aid in developing an early warning system for future COVID-19 outbreaks. These efforts represent an initial exploratory framework, and both continued study of the predictive power of digital indicators as well as further development of the statistical approach are needed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源