论文标题
在部分线性模型中对中介作用的强大推断
Robust Inference for Mediated Effects in Partially Linear Models
论文作者
论文摘要
我们在没有介体M,在没有未衡量的混杂假设的情况下,考虑了暴露对结果的介导的影响,y,y,在介体有条件期望和结果的模型中,在未衡量的混杂假设下是部分线性的。我们提出了直接和间接效应的G-静态器,并在正确指定了M,或X和Y的条件均值的模型时表现出间接效应的一致渐近正态性,并且是正确指定的直接效应,而直接效应是正确的。这标志着在这种特定环境中的改进,比以前的“三重”鲁棒方法,该方法不假定部分线性均值模型。由于测试的综合性质(X对M或M对Y的影响没有影响),对NO介导假设的测试本质上是有问题的,当两种效应大小都小时,导致低功率。我们使用广义的矩(GMM)结果来构建一个新的分数测试框架,其中包括特殊情况,即无调解和无主导效应假设。提出的测试依赖于估计滋扰参数的正交估计策略。模拟表明,与部分线性设置中的传统测试相比,基于GMM的测试在功率和样本性能方面的表现更好,并且在模型错误指定下进行了巨大改进。在对纸条试验的数据的调解分析中进行了新的方法,这是一项随机试验,研究了患有慢性疼痛的患者的非药物干预的影响。可以在github.com/ohines/plmed上找到实施这些方法的随附的R软件包。
We consider mediated effects of an exposure, X on an outcome, Y, via a mediator, M, under no unmeasured confounding assumptions in the setting where models for the conditional expectation of the mediator and outcome are partially linear. We propose G-estimators for the direct and indirect effect and demonstrate consistent asymptotic normality for indirect effects when models for the conditional means of M, or X and Y are correctly specified, and for direct effects, when models for the conditional means of Y, or X and M are correct. This marks an improvement, in this particular setting, over previous `triple' robust methods, which do not assume partially linear mean models. Testing of the no-mediation hypothesis is inherently problematic due to the composite nature of the test (either X has no effect on M or M no effect on Y), leading to low power when both effect sizes are small. We use Generalized Methods of Moments (GMM) results to construct a new score testing framework, which includes as special cases the no-mediation and the no-direct-effect hypotheses. The proposed tests rely on an orthogonal estimation strategy for estimating nuisance parameters. Simulations show that the GMM based tests perform better in terms of power and small sample performance compared with traditional tests in the partially linear setting, with drastic improvement under model misspecification. New methods are illustrated in a mediation analysis of data from the COPERS trial, a randomized trial investigating the effect of a non-pharmacological intervention of patients suffering from chronic pain. An accompanying R package implementing these methods can be found at github.com/ohines/plmed.