论文标题

使用基于不变性的安全框架分布式安全学习

Distributed Safe Learning using an Invariance-based Safety Framework

论文作者

Carron, Andrea, Sieber, Jerome, Zeilinger, Melanie N.

论文摘要

在不确定的动态系统的大规模网络中,通信有限且子系统之间存在较强的交互作用,学习本地模型和控制策略为设计高性能控制器提供了巨大的潜力。同时,缺乏安全保证(以约束满意度的形式考虑)阻止了将数据驱动的技术用于安全至关重要的分布式系统。本文提出了一个安全框架,可以在学习时确保对不确定的分布式系统的限制满意度。该框架考虑了与动力学结合的线性系统,并受到有限的参数不确定性,并利用强大的不变性来确保安全性。特别是,由多个椭圆形不变式集合的联合给出了一个可靠的非凸不变集,以及通过多个稳定线性反馈的组合给出的非线性备份控制定律,是离线计算的。在存在不安全的输入的情况下,安全框架应用了备用控制法,从而阻止了系统违反约束。随着稳健的不变集和备份稳定控制器的计算,在线操作减少了简单的功能评估,这可以在具有有限的计算资源的系统上使用所提出的框架。安全框架的功能由三个数值示例说明。

In large-scale networks of uncertain dynamical systems, where communication is limited and there is a strong interaction among subsystems, learning local models and control policies offers great potential for designing high-performance controllers. At the same time, the lack of safety guarantees, here considered in the form of constraint satisfaction, prevents the use of data-driven techniques to safety-critical distributed systems. This paper presents a safety framework that guarantees constraint satisfaction for uncertain distributed systems while learning. The framework considers linear systems with coupling in the dynamics and subject to bounded parametric uncertainty, and makes use of robust invariance to guarantee safety. In particular, a robust non-convex invariant set, given by the union of multiple ellipsoidal invariant sets, and a nonlinear backup control law, given by the combination of multiple stabilizing linear feedbacks, are computed offline. In presence of unsafe inputs, the safety framework applies the backup control law, preventing the system to violate the constraints. As the robust invariant set and the backup stabilizing controller are computed offline, the online operations reduce to simple function evaluations, which enables the use of the proposed framework on systems with limited computational resources. The capabilities of the safety framework are illustrated by three numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源