论文标题

交换自动编码器以进行深层图像操纵

Swapping Autoencoder for Deep Image Manipulation

论文作者

Park, Taesung, Zhu, Jun-Yan, Wang, Oliver, Lu, Jingwan, Shechtman, Eli, Efros, Alexei A., Zhang, Richard

论文摘要

深层生成模型在从随机采样种子中产生逼真的图像方面变得越来越有效,但是使用此类模型来控制现有图像仍然具有挑战性。我们提出了交换自动编码器,这是一种专门为图像操作而不是随机采样设计的深层模型。关键思想是用两个独立组件编码图像,并强制将任何交换组合映射到逼真的图像。特别是,我们鼓励组件代表结构和纹理,通过强制一个组件在图像的不同部分中编码一个组件同时贴片统计。由于我们的方法是用编码器训练的,因此发现新输入图像的潜在代码变得琐碎,而不是麻烦。结果,它可用于以各种方式来操纵实际输入图像,包括纹理交换,本地和全局编辑以及潜在的代码矢量算术。多个数据集上的实验表明,与最近的生成模型相比,我们的模型产生更好的结果,并且效率更高。

Deep generative models have become increasingly effective at producing realistic images from randomly sampled seeds, but using such models for controllable manipulation of existing images remains challenging. We propose the Swapping Autoencoder, a deep model designed specifically for image manipulation, rather than random sampling. The key idea is to encode an image with two independent components and enforce that any swapped combination maps to a realistic image. In particular, we encourage the components to represent structure and texture, by enforcing one component to encode co-occurrent patch statistics across different parts of an image. As our method is trained with an encoder, finding the latent codes for a new input image becomes trivial, rather than cumbersome. As a result, it can be used to manipulate real input images in various ways, including texture swapping, local and global editing, and latent code vector arithmetic. Experiments on multiple datasets show that our model produces better results and is substantially more efficient compared to recent generative models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源