论文标题
笛卡尔封闭的生物学:类型理论与连贯性
Cartesian closed bicategories: type theory and coherence
论文作者
论文摘要
在这篇论文中,我将简单类型的lambda演算与笛卡尔封闭类别之间的咖喱 - 霍华德 - 武术对应关系到植物环境,然后使用结果类型的理论证明笛卡尔封闭的Bicategories的连贯性结果。笛卡尔封闭的生物游戏--- 2类“到同构”,配备了类似的弱产品和指数 - 逻辑,分类代数和游戏语义中出现。我表明,自由的笛卡尔封闭式生物在一组中的任何平行对1单元之间最多都有一个2细胞,因此,就计算的困难而言, - - 将笛卡尔封闭的BicateGories的数据带到了熟悉的笛卡尔封闭类别的水平。 实际上,我以两种方式证明了这一结果。第一个论点与Power的连贯定理与灵活的双利杆菌的生物学定理密切相关。对于第二个论文的核心关注,第二个论证策略有两个部分:类型理论的构建,以及它满足正常化形式的证据,我称为“局部连贯性”。我使用代数原理综合了类型理论,该理论使用了通用代数(称为“ biclones”的多个)抽象克隆的新概括。然后,使用M. fiore对逐评估的分类分析的生物处理方法,然后证明了一个归一化结果,该结果需要笛卡尔封闭式生物游戏的相干定理。与生物学的先前连贯性结果相反,该论点不依赖于使用Yoneda嵌入的重写理论或严格化的理论。在途中,我证明了一系列完善的类别理论结果的生物概括,呈现出生物胶合胶的概念,并为民间传说的结果提供了足够的条件,使胶水类别构成胶水类别。
In this thesis I lift the Curry--Howard--Lambek correspondence between the simply-typed lambda calculus and cartesian closed categories to the bicategorical setting, then use the resulting type theory to prove a coherence result for cartesian closed bicategories. Cartesian closed bicategories---2-categories `up to isomorphism' equipped with similarly weak products and exponentials---arise in logic, categorical algebra, and game semantics. I show that there is at most one 2-cell between any parallel pair of 1-cells in the free cartesian closed bicategory on a set and hence---in terms of the difficulty of calculating---bring the data of cartesian closed bicategories down to the familiar level of cartesian closed categories. In fact, I prove this result in two ways. The first argument is closely related to Power's coherence theorem for bicategories with flexible bilimits. For the second, which is the central preoccupation of this thesis, the proof strategy has two parts: the construction of a type theory, and the proof that it satisfies a form of normalisation I call "local coherence". I synthesise the type theory from algebraic principles using a novel generalisation of the (multisorted) abstract clones of universal algebra, called "biclones". Using a bicategorical treatment of M. Fiore's categorical analysis of normalisation-by-evaluation, I then prove a normalisation result which entails the coherence theorem for cartesian closed bicategories. In contrast to previous coherence results for bicategories, the argument does not rely on the theory of rewriting or strictify using the Yoneda embedding. Along the way I prove bicategorical generalisations of a series of well-established category-theoretic results, present a notion of glueing of bicategories, and bicategorify the folklore result providing sufficient conditions for a glueing category to be cartesian closed.