论文标题
纵向YouTube和Google搜索参与日志中的个人级焦虑检测和预测
Individual-level Anxiety Detection and Prediction from Longitudinal YouTube and Google Search Engagement Logs
论文作者
论文摘要
焦虑症是世界上最普遍的心理健康状况之一,这是由于生物学和环境因素的复杂相互作用而引起的,并且严重干扰了人们领导正常生活活动的能力。当前检测焦虑的方法在很大程度上依赖于面对面的访谈,这可能是昂贵,耗时的,并且被社会污名所阻碍。在这项工作中,我们提出了一种替代方法,可以使用YouTube的个人在线活动历史和Google搜索引擎(每天数百万人使用的平台)进行个人在线活动历史的进一步估计焦虑程度。我们进行了一项纵向研究,并从志愿者参与者那里收集了多轮匿名YouTube和Google搜索日志,以及他们经过临床验证的地面真相焦虑评估得分。然后,我们开发了可解释的功能,可以捕获在线行为的时间和上下文方面。使用这些,我们能够训练(i)(i)识别患有焦虑症的个体,平均F1得分为0.83,并且(ii)通过预测金标准的广义焦虑症7-项目得分(范围为0到21),以1.87的含量为1.87来评估焦虑水平,基于单独的个人级别的在线互动数据。我们提出的焦虑评估框架是具有成本效益,节省时间,可扩展的,并为将其部署在现实世界中的临床环境中开辟了大门,授权护理提供者和治疗师在任何时候都在任何时候都能了解患者的焦虑症。
Anxiety disorder is one of the world's most prevalent mental health conditions, arising from complex interactions of biological and environmental factors and severely interfering one's ability to lead normal life activities. Current methods for detecting anxiety heavily rely on in-person interviews, which can be expensive, time-consuming, and blocked by social stigmas. In this work, we propose an alternative method to identify individuals with anxiety and further estimate their levels of anxiety using personal online activity histories from YouTube and the Google Search engine, platforms that are used by millions of people daily. We ran a longitudinal study and collected multiple rounds of anonymized YouTube and Google Search logs from volunteering participants, along with their clinically validated ground-truth anxiety assessment scores. We then developed explainable features that capture both the temporal and contextual aspects of online behaviors. Using those, we were able to train models that (i) identify individuals having anxiety disorder with an average F1 score of 0.83 and (ii) assess the level of anxiety by predicting the gold standard Generalized Anxiety Disorder 7-item scores (ranges from 0 to 21) with a mean square error of 1.87 based on the ubiquitous individual-level online engagement data. Our proposed anxiety assessment framework is cost-effective, time-saving, scalable, and opens the door for it to be deployed in real-world clinical settings, empowering care providers and therapists to learn about anxiety disorders of patients non-invasively at any moment in time.