论文标题

通过转导转移学习无偏见的零光语义分割网络

Learning unbiased zero-shot semantic segmentation networks via transductive transfer

论文作者

Liu, Haiyang, Wang, Yichen, Zhao, Jiayi, Yang, Guowu, Lv, Fengmao

论文摘要

旨在获得对图像的详细理解的语义细分是计算机视觉中的重要问题。但是,在实际情况下,通常会出现与培训类别不同的​​新类别。由于收集所有类别的标记数据是不切实际的,因此如何在语义分割中进行零射门学习是一个重要的问题。尽管类别的属性嵌入可以促进不同类别的有效知识转移,但分割网络的预测揭示了对所见类别的明显偏见。在本文中,我们提出了一种易于实现的转导方法,以减轻零击语义分割中的预测偏差。我们的方法假设训练期间都可以使用带有完整像素级标签的源图像和未标记的目标图像。具体来说,源图像用于学习视觉图像和语义嵌入之间的关系,而目标图像则用于减轻对可见类别的预测偏差。我们对Pascal数据集的各种拆分进行了全面的实验。实验结果清楚地证明了我们方法的有效性。

Semantic segmentation, which aims to acquire a detailed understanding of images, is an essential issue in computer vision. However, in practical scenarios, new categories that are different from the categories in training usually appear. Since it is impractical to collect labeled data for all categories, how to conduct zero-shot learning in semantic segmentation establishes an important problem. Although the attribute embedding of categories can promote effective knowledge transfer across different categories, the prediction of segmentation network reveals obvious bias to seen categories. In this paper, we propose an easy-to-implement transductive approach to alleviate the prediction bias in zero-shot semantic segmentation. Our method assumes that both the source images with full pixel-level labels and unlabeled target images are available during training. To be specific, the source images are used to learn the relationship between visual images and semantic embeddings, while the target images are used to alleviate the prediction bias towards seen categories. We conduct comprehensive experiments on diverse split s of the PASCAL dataset. The experimental results clearly demonstrate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源