论文标题

在立方库仑晶体中缺乏对角力常数

Absence of diagonal force constants in cubic Coulomb crystals

论文作者

Andrews, Bartholomew, Conduit, Gareth

论文摘要

准谐波模型提出,可以将晶体建模为通过弹簧连接的原子。我们证明了这种观点如何误导:高斯定律的简单应用表明,立方库仑系统的离子离子潜力不能具有对角线谐波贡献,因此不一定是通过弹簧来建模的。我们通过检查三个说明性方案来研究这种观察结果的影响:裸露的离子,密度紧密结合和密度几乎没有电子模型。对于裸离子模型,我们证明了力常数矩阵中的零元素,并将这种现象解释为Poisson定律的自然结果。在密度紧密结合模型中,我们确认包含局部电子以谐波顺序稳定所有主要的晶体结构,并且我们构建了相对于核心和价电子半径的优选结构的相图。在密度几乎没有电子模型中,我们验证了以背景jellium的形式包含的DeLabalized电子足以抵消对角力常数来自离子离子电位的对角线力常数矩阵,并且我们在所有情况下都表明,与jellium的一阶扰动不会具有势力化的作用。我们讨论了我们与凝结物质中的Wigner晶体,血浆物理学中的Yukawa晶体以及元素固体有关的结果。

The quasi-harmonic model proposes that a crystal can be modeled as atoms connected by springs. We demonstrate how this viewpoint can be misleading: a simple application of Gauss' law shows that the ion-ion potential for a cubic Coulomb system can have no diagonal harmonic contribution and so cannot necessarily be modeled by springs. We investigate the repercussions of this observation by examining three illustrative regimes: the bare ionic, density tight-binding, and density nearly-free electron models. For the bare ionic model, we demonstrate the zero elements in the force constants matrix and explain this phenomenon as a natural consequence of Poisson's law. In the density tight-binding model, we confirm that the inclusion of localized electrons stabilizes all major crystal structures at harmonic order and we construct a phase diagram of preferred structures with respect to core and valence electron radii. In the density nearly-free electron model, we verify that the inclusion of delocalized electrons, in the form of a background jellium, is enough to counterbalance the diagonal force constants matrix from the ion-ion potential in all cases and we show that a first-order perturbation to the jellium does not have a destabilizing effect. We discuss our results in connection to Wigner crystals in condensed matter, Yukawa crystals in plasma physics, as well as the elemental solids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源