论文标题

实现危害危机的代数及其轻松的模块

A realisation of the Bershadsky--Polyakov algebras and their relaxed modules

论文作者

Adamovic, Drazen, Kawasetsu, Kazuya, Ridout, David

论文摘要

我们介绍了通用/简单的Bershadsky--polyakov顶点代数作为通用/简单/简单Zamolodchikov vertex代数的张量产物的亚代代数和同型lattice顶点代数。这概括了与$ \ mathfrak {sl} _2 $和$ \ mathfrak {osp}(1 | 2)$相关的通用/简单仿射顶点代数的实现。同样构建了放松的最高重量模块,建立了其不可还原性的条件,并明确计算其特征,从而概括了Arxiv的字符公式:1803.01989。

We present a realisation of the universal/simple Bershadsky--Polyakov vertex algebras as subalgebras of the tensor product of the universal/simple Zamolodchikov vertex algebras and an isotropic lattice vertex algebra. This generalises the realisation of the universal/simple affine vertex algebras associated to $\mathfrak{sl}_2$ and $\mathfrak{osp}(1|2)$ given in arXiv:1711.11342. Relaxed highest-weight modules are likewise constructed, conditions for their irreducibility are established, and their characters are explicitly computed, generalising the character formulae of arXiv:1803.01989.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源