论文标题

退化的流形,helimagnets和多 - $ \ Mathbf {q} $手性阶段在经典的海森伯格抗fiferromagnet中,面部中心地带晶格

Degenerate manifolds, helimagnets, and multi-$\mathbf{Q}$ chiral phases in the classical Heisenberg antiferromagnet on the face-centered-cubic lattice

论文作者

Balla, Péter, Iqbal, Yasir, Penc, Karlo

论文摘要

我们介绍了一项详细的研究,对面部中心晶格的经典Heisenberg模型的基态相图。通过考虑交换相互作用直到第三个最近的邻居,我们发现了相应的,helimagnetic,以及包括非coplanar和手性自旋结构的非共线多 - {\ bf Q}顺序。我们揭示了在相图中出现在三重点和某些相边界的显着变性歧管的存在。在这些歧管中,自旋哈密顿量可以作为有限图案的完整旋转正方形重塑,使我们能够识别实际空间中精确的基态旋转构型的家族 - 这些家族包括随机堆叠的铁磁或防铁磁有序的平面,并相互作用的铁磁性链。最后,我们以ISING模型的示例对发现的后果进行了批判性研究,在该模型中,我们精确地列举了所有数值以获取有限群集。

We present a detailed study of the ground state phase diagram of the classical frustrated Heisenberg model on the face-centered-cubic lattice. By considering exchange interactions up till third nearest neighbors, we find commensurate, helimagnetic, as well as noncollinear multi-{\bf Q} orders which include noncoplanar and chiral spin structures. We reveal the presence of subextensively degenerate manifolds that appear at triple points and certain phase boundaries in the phase diagram. Within these manifolds, the spin Hamiltonian can be recast as a complete square of spins on finite motifs, permitting us to identify families of exact ground state spin configurations in real space -- these include randomly stacked ferro- or antiferromagnetically ordered planes and interacting ferromagnetic chains, among others. Finally, we critically investigate the ramifications of our findings on the example of the Ising model, where we exactly enumerate all the states numerically for finite clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源