论文标题
深层组织的无创的三维光声定位微观摄影
Noninvasive three-dimensional optoacoustic localization microangiography of deep tissues
论文作者
论文摘要
结构性微血管改变和功能障碍是癌症,糖尿病,缺血性中风,神经退行性疾病和许多其他疾病的关键疾病指标。传统上,微脉管系统的体内可视化仅限于可通过光学显微镜访问的毫米尺度深度。光声成像已经使在深层血管中绘制功能性血液动力学参数施加的屏障已经突破了,但是在异质生物组织中超声波的衍射和分散剂可防止达到毛细管分辨率。在此,我们通过完整的头皮和颅骨,通过稀疏分布式高度吸收的微粒的光声定位,通过完整的头皮和颅骨表明了深小鼠大脑的三维微观摄影。通过设计5 $μ$ m的极度吸收的二氯甲烷微副细胞,在近红外波长下表现出比红细胞高四个数量级的二氯甲烷微副细胞,从而促进体内兼容性和在高吸收血液的存在下促进单个颗粒敏感性。微血管结构内的血流速度的准确映射也通过光声断层扫描系统的高3D帧速率促进了。我们进一步表明,来自局部颗粒的检测到的光声信号强度可能用于估计光学异质组织内的光通量分布,这是生物医学光学的长期定量挑战。鉴于光声对活组织中各种功能,代谢和分子事件的固有敏感性,这种新方法为无侵入性的深度组织显微镜观测铺平了道路,并以无与伦比的分辨率,对比度和速度和速度为止,这为您提供了道路。
Structural microvascular alterations and dysfunction serve as key disease indicators of cancer, diabetes, ischemic stroke, neurodegenerative disorders and many other conditions. In vivo visualization of the microvasculature has traditionally been restricted to millimeter scale depths accessible with optical microscopy. Optoacoustic imaging has enabled breaking through the barrier imposed by light diffusion to map functional hemodynamic parameters in deep-seated vessels, but diffraction and dispersion of ultrasound waves in heterogeneous living tissues prevents reaching capillary resolution. Herein, we demonstrate three-dimensional microangiography of deep mouse brain beyond the acoustic diffraction limit (<20$μ$m resolution) through the intact scalp and skull via optoacoustic localization of sparsely-distributed highly absorbing microparticles. This was enabled by devising 5$μ$m sized extremely absorbing dichloromethane microdroplets exhibiting four orders of magnitude higher optical absorption than red blood cells at near-infrared wavelengths, thus facilitating in vivo compatibility and single particle sensitivity in the presence of highly absorbing blood background. Accurate mapping of the blood flow velocity within microvascular structures was also facilitated by the high 3D frame rate of the optoacoustic tomography system. We further show that the detected optoacoustic signal intensities from the localized particles may serve for estimating the light fluence distribution within optically heterogeneous tissues, a long-standing quantification challenge in biomedical optics. Given the intrinsic sensitivity of optoacoustics to various functional, metabolic and molecular events in living tissues, this new approach paves the way for non-invasive deep-tissue microscopic observations with unrivaled resolution, contrast and speed.