论文标题

通过高维神经网络预测氧化和旋转状态:应用于锂氧化锂尖晶石的应用

Predicting Oxidation and Spin States by High-Dimensional Neural Networks: Applications to Lithium Manganese Oxide Spinels

论文作者

Eckhoff, Marco, Lausch, Knut Nikolas, Blöchl, Peter E., Behler, Jörg

论文摘要

锂离子电池通常包含过渡金属氧化物,例如li $ _ {x} $ mn $ _2 $ o $ $ _4 $($ 0 \ leq x \ leq2 $)。根据LI内容的不同比率,Mn $^\ Text {III} $与Mn $^\ text {iv} $ ions存在。结合电子跳跃,Mn $^\ text {iii} $ o $ $ _6 $ contahedra的jahn-teller扭曲可能会产生复杂的现象,例如结构过渡和导电。对于小型模型系统,可以使用密度功能理论(DFT)确定氧化和自旋状态,但DFT对动力学现象的研究太要求了。以前,我们已经表明,高维神经网络电位可以扩展分子动力学(MD)li $ _ {x} $ mn $ _2 $ o $ $ _4 $的分子动力学(MD),但这些模拟没有提供有关电子结构的信息。在这里,我们将神经网络的使用扩展到原子氧化和自旋状态的预测。由此产生的高维神经网络能够预测MN离子的旋转,其误差仅为0.03 $ \ HBAR $。我们发现Mn e $ _ \ text {g} $电子是正确保存的,并且jahn-teller扭曲的mn $^\ text {iii} $ o $ $ _6 $ contahedra的数量准确地预测了不同的li载荷。在280至300 K之间观察到电荷顺序转变,这与电阻率测量匹配。此外,电子跳传导的激活能预计将在0.18 eV上仅偏离实验0.02 eV。这项工作表明,机器学习能够提供准确的表示,即李$ _x $ _x $ _2 $ _2 $ o $ $ $ _4 $的几何和电子结构动力学,按时间和长度尺度,这些量表无法从头开始。

Lithium ion batteries often contain transition metal oxides like Li$_{x}$Mn$_2$O$_4$ ($0\leq x\leq2$). Depending on the Li content different ratios of Mn$^\text{III}$ to Mn$^\text{IV}$ ions are present. In combination with electron hopping the Jahn-Teller distortions of the Mn$^\text{III}$O$_6$ octahedra can give rise to complex phenomena like structural transitions and conductance. While for small model systems oxidation and spin states can be determined using density functional theory (DFT), the investigation of dynamical phenomena by DFT is too demanding. Previously, we have shown that a high-dimensional neural network potential can extend molecular dynamics (MD) simulations of Li$_{x}$Mn$_2$O$_4$ to nanosecond time scales, but these simulations did not provide information about the electronic structure. Here we extend the use of neural networks to the prediction of atomic oxidation and spin states. The resulting high-dimensional neural network is able to predict the spins of the Mn ions with an error of only 0.03 $\hbar$. We find that the Mn e$_\text{g}$ electrons are correctly conserved and that the number of Jahn-Teller distorted Mn$^\text{III}$O$_6$ octahedra is predicted precisely for different Li loadings. A charge ordering transition is observed between 280 and 300 K, which matches resistivity measurements. Moreover, the activation energy of the electron hopping conduction above the phase transition is predicted to be 0.18 eV deviating only 0.02 eV from experiment. This work demonstrates that machine learning is able to provide an accurate representation of both, the geometric and the electronic structure dynamics of Li$_x$Mn$_2$O$_4$, on time and length scales that are not accessible by ab initio MD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源