论文标题

二维晶体中的偏斜散射和侧跳驱动器激进谷效应

Skew Scattering and Side Jump Drive Exciton Valley Hall Effect in Two-Dimensional Crystals

论文作者

Glazov, M. M., Golub, L. E.

论文摘要

激子山谷大厅的效应是在有阻力的情况下的空间分离。通常,效果与由于Bloch带的浆果曲率而获得的异常速度有关。在这里,我们表明,异常速度在激子谷霍尔效应中没有作用,该效应受侧跳和偏斜散射机制的控制。在存在合成电场和声子阻力的情况下,我们开发了激子谷霍尔效应的微观理论,并计算了对山谷大厅电流的所有相关贡献​​,也证明了取消异常速度的取消。显示了对阻力和散射过程的效果的敏感性。我们扩展了漂移扩散模型以说明山谷大厅效应,并计算激子密度和山谷极化曲线。

Exciton Valley Hall effect is the spatial separation of the valley-tagged excitons in the presence of a drag force. Usually, the effect is associated with the anomalous velocity acquired by the particles due to the Berry curvature of the Bloch bands. Here we show that the anomalous velocity plays no role in the exciton valley Hall effect, which is governed by the side-jump and skew scattering mechanisms. We develop microscopic theory of the exciton valley Hall effect in the presence of synthetic electric field and phonon drag and calculate all relevant contributions to the valley Hall current also demonstrating the cancellation of the anomalous velocity. The sensitivity of the effect to the origin of the drag force and to the scattering processes is shown. We extend the drift-diffusion model to account for the valley Hall effect and calculate the exciton density and valley polarization profiles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源