论文标题
量子光谱聚类
Quantum Spectral Clustering
论文作者
论文摘要
光谱群集是一种强大的无监督的机器学习算法,用于使用非凸或嵌套结构聚类数据。借助图理论中的根,它使用拉普拉斯矩阵的光谱特性将数据投影在群集更有效的低维空间中。尽管它在聚类任务方面取得了成功,但在实践中,光谱聚类在$ O(n^3)$的快速运行时间中遭受了损失,其中$ n $是数据集中的点数。在这项工作中,我们提出了一种执行光谱聚类的端到端量子算法,从而扩展了量子机学习中的许多作品。量子算法由两个部分组成:第一个是与预计的laplacian矩阵相对应的量子状态的有效创建,第二个是应用$ k $ - $ -MEANS算法的现有量子类似物。这两个步骤在多个方面都取决于集群的数量,以及由量子过程产生的精度和数据参数,以及在输入向量的尺寸上。我们的数值模拟显示,当考虑到所有术语时,渐近线性生长均为$ n $,明显好于经典的立方生长。这项工作打开了其他基于图的量子机学习算法的路径,因为它为有效的计算和量子访问了量子的量子,并访问了量子的量子。
Spectral clustering is a powerful unsupervised machine learning algorithm for clustering data with non convex or nested structures. With roots in graph theory, it uses the spectral properties of the Laplacian matrix to project the data in a low-dimensional space where clustering is more efficient. Despite its success in clustering tasks, spectral clustering suffers in practice from a fast-growing running time of $O(n^3)$, where $n$ is the number of points in the dataset. In this work we propose an end-to-end quantum algorithm performing spectral clustering, extending a number of works in quantum machine learning. The quantum algorithm is composed of two parts: the first is the efficient creation of the quantum state corresponding to the projected Laplacian matrix, and the second consists of applying the existing quantum analogue of the $k$-means algorithm. Both steps depend polynomially on the number of clusters, as well as precision and data parameters arising from quantum procedures, and polylogarithmically on the dimension of the input vectors. Our numerical simulations show an asymptotic linear growth with $n$ when all terms are taken into account, significantly better than the classical cubic growth. This work opens the path to other graph-based quantum machine learning algorithms, as it provides routines for efficient computation and quantum access to the Incidence, Adjacency, and projected Laplacian matrices of a graph.