论文标题

库普曼分析流体流的理论框架,第1部分:本地库普曼谱和属性

A theoretical framework for Koopman analyses of fluid flows, part 1: local Koopman spectrum and properties

论文作者

Zhang, Wei, Wei, Mingjun

论文摘要

研究了本地的Koopman光谱问题,以解决非线性系统的所有动态。所提出的光谱问题与各种线性系统的线性光谱理论兼容,并且发现了局部Koopman光谱的几种特性。首先,针对非线性可观察物发现了扩散规则,并递归地适用于非线性系统。其次,由于可以将动力学分解为基础和扰动部分,因此揭示了非线性动力学的Koopman本特征空间的层次结构,在该部分可以分析或数值上分析前者,并且后者进一步分为线性和非线性部分。线性部分可以通过线性光谱理论分析。然后将它们递归地扩散到非线性部分的无限数字。第三,在合适的条件下,局部的库普曼频谱和本征函数在整个歧管中不断地,分析性地变化,这些条件源自操作员扰动理论。两种流体动力学的情况进行了数值研究。一个是在临界雷诺数附近的HOPF分类处经过圆柱体的二维流。两个渐近阶段,通过DMD算法分别研究了不稳定固定点和稳定极限周期周围的流动系统。 Koopman光谱的三合会链和晶格分布证实了Koopman Eigenspace的扩散规则和层次结构。另一个例子是流过固定圆柱体的三维二级不稳定性,其中发现了表征流动主要结构的傅立叶模式,浮标模式和高阶Koopman模式。

Local Koopman spectral problem is studied to resolve all dynamics for a nonlinear system. The proposed spectral problem is compatible with the linear spectral theory for various linear systems, and several properties of local Koopman spectrums are discovered. Firstly, proliferation rule is discovered for nonlinear observables and it applies to nonlinear systems recursively. Secondly, the hierarchy structure of Koopman eigenspace of nonlinear dynamics is revealed since dynamics can be decomposed into the base and perturbation parts, where the former can be analyzed analytically or numerically and the latter is further divided into linear and nonlinear parts. The linear part can be analyzed by the linear spectrums theory. They are then recursively proliferated to infinite numbers for the nonlinear part. Thirdly, local Koopman spectrums and eigenfunctions change continuously and analytically in the whole manifold under suitable conditions, derived from operator perturbation theory. Two cases of fluid dynamics are numerically studied. One is the two-dimensional flow past cylinder at the Hopf-bifurcation near the critical Reynolds number. Two asymptotic stages, flow systems around an unstable fixed point and a stable limit cycle were studied separately by the DMD algorithm. The triad-chain and the lattice distribution of Koopman spectrums confirmed the proliferation rule and hierarchy structure of Koopman eigenspace. Another example is the three-dimensional secondary instability of flow past a fixed cylinder, where the Fourier modes, Floquet modes, and high-order Koopman modes characterizing the main structure of the flow are discovered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源