论文标题
图形上的交互式路径推理以进行对话推荐
Interactive Path Reasoning on Graph for Conversational Recommendation
论文作者
论文摘要
传统推荐系统估算了过去交互历史记录项目的用户偏好,因此受到获得细粒度和动态用户偏好的局限性。会话推荐系统(CRS)通过使系统能够直接向用户询问其项目上的首选属性,从而对这些限制进行了革命。但是,现有的CRS方法并未充分利用这种优势 - 它们仅以更隐含的方式使用属性反馈,例如更新潜在的用户表示。在本文中,我们提出了对话路径推理(CPR),这是一个通用框架,将对话推荐建模为图表上的交互式路径推理问题。它通过遵循用户反馈来浏览属性顶点,以明确的方式利用用户首选属性。通过利用图形结构,CPR能够修剪许多无关的候选属性,从而使击中用户偏爱的属性的机会更好。为了证明CPR的工作原理,我们提出了一个名为SCPR(简单CPR)的简单而有效的实例化。我们对多轮对话推荐方案进行了经验研究,这是迄今为止最现实的CRS设置,它考虑了多个回合的属性和推荐项目。通过在两个数据集Yelp和LastFM上进行的大量实验,我们验证了SCPR的有效性,这极大地超过了最先进的CRS方法EAR(ARXIV:2002.09102)和CRM(ARXIV:ARXIV:1806.03277)。特别是,我们发现存在越多的属性,我们的方法可以实现的优势越多。
Traditional recommendation systems estimate user preference on items from past interaction history, thus suffering from the limitations of obtaining fine-grained and dynamic user preference. Conversational recommendation system (CRS) brings revolutions to those limitations by enabling the system to directly ask users about their preferred attributes on items. However, existing CRS methods do not make full use of such advantage -- they only use the attribute feedback in rather implicit ways such as updating the latent user representation. In this paper, we propose Conversational Path Reasoning (CPR), a generic framework that models conversational recommendation as an interactive path reasoning problem on a graph. It walks through the attribute vertices by following user feedback, utilizing the user preferred attributes in an explicit way. By leveraging on the graph structure, CPR is able to prune off many irrelevant candidate attributes, leading to better chance of hitting user preferred attributes. To demonstrate how CPR works, we propose a simple yet effective instantiation named SCPR (Simple CPR). We perform empirical studies on the multi-round conversational recommendation scenario, the most realistic CRS setting so far that considers multiple rounds of asking attributes and recommending items. Through extensive experiments on two datasets Yelp and LastFM, we validate the effectiveness of our SCPR, which significantly outperforms the state-of-the-art CRS methods EAR (arXiv:2002.09102) and CRM (arXiv:1806.03277). In particular, we find that the more attributes there are, the more advantages our method can achieve.