论文标题

半监督顺序生成模型

Semi-supervised Sequential Generative Models

论文作者

Teng, Michael, Le, Tuan Anh, Scibior, Adam, Wood, Frank

论文摘要

我们介绍了一个新的目标,用于训练具有离散潜在变量的深层生成时间序列模型,该变量仅可用,而监督可用于稀少。对于现有方法,半监督学习的实例是具有挑战性的,因为可能的离散潜在配置的指数数量会导致高方差梯度估计器。我们首先通过重新润滑的尾流来扩展标准的半监督生成建模目标来克服这个问题。但是,我们发现当可用标签的频率在训练序列之间变化时,这种方法仍然会受到损失。最后,我们引入了一个统一的目标,灵感来自教师的启发,并表明这种方法对可变长度监督是可靠的。我们将最终的方法称为咖啡因的尾流(CWS),以强调其对实际数据的额外依赖性。我们通过对MNIST,手写和果蝇轨迹数据进行实验来证明其有效性。

We introduce a novel objective for training deep generative time-series models with discrete latent variables for which supervision is only sparsely available. This instance of semi-supervised learning is challenging for existing methods, because the exponential number of possible discrete latent configurations results in high variance gradient estimators. We first overcome this problem by extending the standard semi-supervised generative modeling objective with reweighted wake-sleep. However, we find that this approach still suffers when the frequency of available labels varies between training sequences. Finally, we introduce a unified objective inspired by teacher-forcing and show that this approach is robust to variable length supervision. We call the resulting method caffeinated wake-sleep (CWS) to emphasize its additional dependence on real data. We demonstrate its effectiveness with experiments on MNIST, handwriting, and fruit fly trajectory data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源