论文标题

与协变量的ROC曲线的强大方法

A robust approach for ROC curves with covariates

论文作者

Bianco, Ana M., Boente, Graciela, Gonzalez-Manteiga, Wenceslao

论文摘要

接收器操作特性(ROC)曲线是一种有用的工具,可测量连续变量的区分功能或药物或医疗测试的准确性,以区分两个条件或类别。在某些情况下,从业者可能能够测量与诊断变量相关的一些协变量,这些变量可以增加ROC曲线的区分功能。为了防止观测值之间的非典型数据存在,引入了在协变量存在下获得ROC曲线可靠估计器的程序。考虑的建议集中在半参数方法上,该方法符合位置尺度回归模型与诊断变量,并考虑了回归残差分布的经验估计量。强大的参数估计器与自适应加权经验分布估计器结合使用,以减轻异常值的影响。该提案的一致性是在轻度假设下得出的。进行了一项蒙特卡洛研究,以将强大的估计量与经典的估计量进行比较,并在清洁和受污染的样品中进行比较。还分析了真实的数据集。

The Receiver Operating Characteristic (ROC) curve is a useful tool that measures the discriminating power of a continuous variable or the accuracy of a pharmaceutical or medical test to distinguish between two conditions or classes. In certain situations, the practitioner may be able to measure some covariates related to the diagnostic variable which can increase the discriminating power of the ROC curve. To protect against the existence of atypical data among the observations, a procedure to obtain robust estimators for the ROC curve in presence of covariates is introduced. The considered proposal focusses on a semiparametric approach which fits a location-scale regression model to the diagnostic variable and considers empirical estimators of the regression residuals distributions. Robust parametric estimators are combined with adaptive weighted empirical distribution estimators to down-weight the influence of outliers. The uniform consistency of the proposal is derived under mild assumptions. A Monte Carlo study is carried out to compare the performance of the robust proposed estimators with the classical ones both, in clean and contaminated samples. A real data set is also analysed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源