论文标题

生成具有优化质量的对抗示例

Generating Adversarial Examples with an Optimized Quality

论文作者

Khormali, Aminollah, Nyang, DaeHun, Mohaisen, David

论文摘要

深度学习模型被广泛用于一系列应用领域,例如计算机视觉,计算机安全等。但是,深度学习模型容易受到对抗性示例(AES)的攻击,即精心制作的样品以欺骗这些模型。最近的研究介绍了新的对抗攻击方法,但据我们所知,除了简单的质量措施(例如错误分类率(MR))之外,没有一个人为制作的例子提供保证的质量。在本文中,我们将图像质量评估(IQA)指标纳入了AE的设计和生成过程。我们提出了一种基于进化的单目标优化方法,该方法生成具有较高分类率的AE,并明确提高样品的质量,因此没有可区分性,同时仅扰动有限数量的像素。特别是,将几种IQA指标(包括边缘分析,傅立叶分析和特征描述符)借给生成AE的过程。基于进化的算法的独特特征使我们能够同时优化AES的错误分类率和IQA指标。为了评估所提出方法的性能,我们在不同的众所周知的基准数据集(MNIST,CIFAR,GTSRB和OPEN IMAGE DATASET V5)上进行了密集实验,同时考虑了各种客观优化配置。与存在的攻击方法相比,从我们的实验中获得的结果验证了我们最初的假设,即在AES生成过程中使用IQA指标可以显着提高其质量,同时维持高分类的率很高。可转移性和人类感知研究提供了可接受的表现。

Deep learning models are widely used in a range of application areas, such as computer vision, computer security, etc. However, deep learning models are vulnerable to Adversarial Examples (AEs),carefully crafted samples to deceive those models. Recent studies have introduced new adversarial attack methods, but, to the best of our knowledge, none provided guaranteed quality for the crafted examples as part of their creation, beyond simple quality measures such as Misclassification Rate (MR). In this paper, we incorporateImage Quality Assessment (IQA) metrics into the design and generation process of AEs. We propose an evolutionary-based single- and multi-objective optimization approaches that generate AEs with high misclassification rate and explicitly improve the quality, thus indistinguishability, of the samples, while perturbing only a limited number of pixels. In particular, several IQA metrics, including edge analysis, Fourier analysis, and feature descriptors, are leveraged into the process of generating AEs. Unique characteristics of the evolutionary-based algorithm enable us to simultaneously optimize the misclassification rate and the IQA metrics of the AEs. In order to evaluate the performance of the proposed method, we conduct intensive experiments on different well-known benchmark datasets(MNIST, CIFAR, GTSRB, and Open Image Dataset V5), while considering various objective optimization configurations. The results obtained from our experiments, when compared with the exist-ing attack methods, validate our initial hypothesis that the use ofIQA metrics within generation process of AEs can substantially improve their quality, while maintaining high misclassification rate.Finally, transferability and human perception studies are provided, demonstrating acceptable performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源