论文标题
由Frobenius Bimodules连接的代表尺寸与组代数的应用
Representation dimensions linked by Frobenius bimodules with applications to group algebras
论文作者
论文摘要
我们建立了由Frobenius Bimodule或扩展连接的两个代数的表示尺寸之间的关系。因此,获得了代数,对称性分开的代数和交叉产物的对称代数的表示尺寸的上限和平等公式。特别是,对于有限组G的任何亚组H,如果[g:h]在一个场中是可逆的,则该磁场上G和H的组代数的表示尺寸是相同的。
We establish relations between representation dimensions of two algebras connected by a Frobenius bimodule or extension. Consequently, upper bounds and equality formulas for representation dimensions of group algebras, symmetric separably equivalent algebras and crossed products are obtained. Particularly, for any subgroup H of a finite group G, if [G:H] is invertible in a field, then the representation dimensions of the group algebras of G and H over the field are the same.