论文标题
带有适用于野火的空间泊松栏模型
A spatial Poisson hurdle model with application to wildfires
论文作者
论文摘要
建模野火发生对于灾难管理非常重要,包括预防,检测和抑制大型灾难性事件。我们提出了一个空间泊松栏模型,用于探索每月野火事件计数的地理差异,并将其应用于印度尼西亚和澳大利亚。该模型包括两个先验独立的空间结构潜在效应,这些效应解释了野火发生概率的残余空间变化,并考虑了正数的正数。通过经验贝叶斯使用拉普拉斯近似与边缘后部的经验贝叶斯提供了推断,该近似为具有稀疏结构的潜在高斯模型提供了快速推断。在这两种情况下,我们的模型都符合有关野火的几个经验已知的事实。我们得出的结论是,高程,树木覆盖率,相对湿度,表面温度以及湿度和温度之间的相互作用是野火发生的每月计数的重要预测指标。此外,我们的发现对表面温度及其与相对湿度的相互作用显示出相反的影响。
Modelling wildfire occurrences is important for disaster management including prevention, detection and suppression of large catastrophic events. We present a spatial Poisson hurdle model for exploring geographical variation of monthly counts of wildfire occurrences and apply it to Indonesia and Australia. The model includes two a priori independent spatially structured latent effects that account for residual spatial variation in the probability of wildfire occurrence, and the positive count rate given an occurrence. Inference is provided by empirical Bayes using the Laplace approximation to the marginal posterior which provides fast inference for latent Gaussian models with sparse structures. In both cases, our model matched several empirically known facts about wildfires. We conclude that elevation, percentage tree cover, relative humidity, surface temperature, and the interaction between humidity and temperature to be important predictors of monthly counts of wildfire occurrences. Further, our findings show opposing effects for surface temperature and its interaction with relative humidity.