论文标题

精神疾病亚型的功能性MRI申请:评论

Functional MRI applications for psychiatric disease subtyping: a review

论文作者

Miranda, Lucas, Paul, Riya, Pütz, Benno, Müller-Myhsok, Bertram

论文摘要

历史上,精神疾病仅使用症状信息进行了分类。随着新技术的出现,使研究人员能够更直接地研究大脑机制,对定义病理学和病因的机理原理的兴趣大大增加了。这对于个性化医学领域特别有吸引力,该领域正在寻找以数据驱动的方法来改善个人诊断,预后和治疗选择。在这里,我们打算系统地分析功能性MRI对精神病生物型的阐明以及通过应用于症状或生物标志物数据的无监督学习获得的亚型的解释。我们搜索了现有文献以获取或解释精神病亚型的功能性MRI应用。将PRISMA指南应用于过滤检索的研究,并将主动的学习框架ASReviews用于文章优先级。从符合纳入标准的20项研究中,有5个使用功能性MRI数据来解释症状衍生的疾病簇,其中4个将其用于解释源自FMRI本身以外的生物标志物数据的群集,并将11个应用于FMRI。重度抑郁症和精神分裂症是研究最多的两种病理,其次是多动症,精神病,自闭症和早期暴力。未检索跨诊断研究。尽管对个性化医学和数据驱动的疾病亚型的兴趣正在上升,精神病学并不例外,但迄今为止,无监督的功能性MRI数据分析是不一致的,并且在收集和集中数据,标准化管道和模型验证以及方法验证以及方法修改方面还有很多尚待完成。 fMRI在跨诊断精神病学领域的使用尚未得到充分探索。

Psychiatric disorders have historically been classified using symptom information alone. With the advent of new technologies that allowed researchers to investigate brain mechanisms more directly, interest in the mechanistic rationale behind defined pathologies and aetiology redefinition has greatly increased. This is particularly appealing for the field of personalised medicine, which searches for data-driven approaches to improve individual diagnosis, prognosis and treatment selection. Here we intend to systematically analyse the usage of functional MRI on both the elucidation of psychiatric disease biotypes and the interpretation of subtypes obtained via unsupervised learning applied to symptom or biomarker data. We searched the existing literature for functional MRI applications to the obtention or interpretation of psychiatric disease subtypes. The PRISMA guidelines were applied to filter the retrieved studies, and the active learning framework ASReviews was applied for article prioritization. From the 20 studies that met the inclusion criteria, 5 used functional MRI data to interpret symptom-derived disease clusters, 4 used it for the interpretation of clusters derived from biomarker data other than fMRI itself, and 11 applied clustering to fMRI directly. Major depression disorder and schizophrenia were the two most studied pathologies, followed by ADHD, psychosis, autism disorder, and early violence. No trans-diagnostic studies were retrieved. While interest in personalised medicine and data-driven disease subtyping is on the rise and psychiatry is not the exception, unsupervised analyses of functional MRI data are inconsistent to date, and much remains to be done in terms of gathering and centralising data, standardising pipelines and model validation, and method refinement. The usage of fMRI in the field of trans-diagnostic psychiatry remains vastly unexplored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源