论文标题
4D F理论中的机器学习和代数方法
Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory
论文作者
论文摘要
通过工程矢量样(HIGGS)对4D理论压缩的启发,我们将机器学习和代数几何技术结合在一起,以分析群体曲线家族的线束共同体。为了量化这些共同体的跳跃,我们首先生成了180万对嵌入$ dp_3 $的线束和曲线,为此我们计算了共同体。在此数据上训练的白色盒子机器学习方法为曲线分裂引起的跳跃提供了直觉,我们用来在F理论玩具模型中构建其他类似矢量的希格斯对。我们还发现,为了定量解释完整的数据集,需要代数几何形状,尤其是Brill(尤其是Brill)的其他工具。使用这些成分,我们引入了一种示意方法,以表达每个物质曲线的参数空间的共同体跳跃,这反映了F理论复杂结构模量模量在矢量样光谱方面的分层。此外,这些见解提供了一种算法有效的方法,以估计整个参数空间中可能的共同体学维度。
Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jumps of these cohomologies, we first generate 1.8 million pairs of line bundles and curves embedded in $dP_3$, for which we compute the cohomologies. A white-box machine learning approach trained on this data provides intuition for jumps due to curve splittings, which we use to construct additional vector-like Higgs-pairs in an F-Theory toy model. We also find that, in order to explain quantitatively the full dataset, further tools from algebraic geometry, in particular Brill--Noether theory, are required. Using these ingredients, we introduce a diagrammatic way to express cohomology jumps across the parameter space of each family of matter curves, which reflects a stratification of the F-theory complex structure moduli space in terms of the vector-like spectrum. Furthermore, these insights provide an algorithmically efficient way to estimate the possible cohomology dimensions across the entire parameter space.