论文标题
在自主驾驶中朝基于LIDAR的强大感知:一般的黑盒对抗传感器攻击和对策
Towards Robust LiDAR-based Perception in Autonomous Driving: General Black-box Adversarial Sensor Attack and Countermeasures
论文作者
论文摘要
感知在自主驾驶系统中起关键作用,该系统利用摄像机和激光镜(光检测和范围)等机载传感器来评估周围环境。最近的研究表明,基于激光雷达的感知容易受到欺骗攻击的影响,在这种攻击中,对手通过策略性地将激光信号传输到受害者的LiDAR传感器上,在受害者自动驾驶汽车面前欺骗一辆假车。但是,现有的攻击遭受了有效性和一般性限制。在这项工作中,我们执行了第一项研究,以探索当前基于激光雷达的感知体系结构的一般脆弱性,并发现LiDar Point云中忽略的闭塞模式使自动驾驶汽车使自动驾驶汽车容易受到欺骗攻击。我们根据我们确定的漏洞构建了第一个黑盒欺骗攻击,该漏洞普遍实现了所有目标模型的平均成功率约为80%。我们进行了第一项国防研究,建议CARLO减轻激光雷达欺骗攻击。 Carlo通过将忽略的闭塞模式视为不变的物理特征来检测欺骗数据,从而将平均攻击成功率降低到5.5%。同时,我们迈出了探索基于激光雷达的感知的一般体系结构的第一步,并提出将被忽视的物理特征嵌入到端到端学习中的SVF。 SVF进一步将平均攻击成功率降低到约2.3%。
Perception plays a pivotal role in autonomous driving systems, which utilizes onboard sensors like cameras and LiDARs (Light Detection and Ranging) to assess surroundings. Recent studies have demonstrated that LiDAR-based perception is vulnerable to spoofing attacks, in which adversaries spoof a fake vehicle in front of a victim self-driving car by strategically transmitting laser signals to the victim's LiDAR sensor. However, existing attacks suffer from effectiveness and generality limitations. In this work, we perform the first study to explore the general vulnerability of current LiDAR-based perception architectures and discover that the ignored occlusion patterns in LiDAR point clouds make self-driving cars vulnerable to spoofing attacks. We construct the first black-box spoofing attack based on our identified vulnerability, which universally achieves around 80% mean success rates on all target models. We perform the first defense study, proposing CARLO to mitigate LiDAR spoofing attacks. CARLO detects spoofed data by treating ignored occlusion patterns as invariant physical features, which reduces the mean attack success rate to 5.5%. Meanwhile, we take the first step towards exploring a general architecture for robust LiDAR-based perception, and propose SVF that embeds the neglected physical features into end-to-end learning. SVF further reduces the mean attack success rate to around 2.3%.