论文标题

黯然失色的二进制物的物理学。 V.解决反问题的一般框架

Physics of Eclipsing Binaries. V. General Framework for Solving the Inverse Problem

论文作者

Conroy, Kyle E, Kochoska, Angela, Hey, Daniel, Pablo, Herbert, Hambleton, Kelly M, Jones, David, Giammarco, Joseph, Abdul-Masih, Michael, Prsa, Andrej

论文摘要

Phoebe 2是一个用于建模可观察到的星星系统的Python软件包,但到目前为止,已经完全集中在前向模型上 - 也就是说,给出了一个合成模型,给定了描述系统和观测值的大量参数的固定值。逆问题是,获得观察数据的轨道和恒星参数,它更为复杂且计算上昂贵,因为它需要生成大量的前向模型来确定哪种参数和不确定性最佳代表可用的观察数据。确定最佳解决方案的过程以及在这些参数上获得可靠和鲁棒的不确定性的过程通常需要使用多种算法,包括优化器和采样器。此外,Phoebe的前向模型被设计为尽可能健壮,但与其他代码相比,计算量昂贵。因此,考虑到特定系统的合理假设,使用最有效的代码是有用的,但是学习多种代码的复杂性为实践中的障碍带来了障碍。在这里,我们介绍了Phoebe的2.3版本(可从http://phoebe-project.org公开获得),该版本介绍了用于定义和处理参数分布的一般框架,并利用了多个不同的估计,优化和采样算法。提出的框架支持多个前向模型,包括菲比本身内置的强大模型。

PHOEBE 2 is a Python package for modeling the observables of eclipsing star systems, but until now has focused entirely on the forward-model -- that is, generating a synthetic model given fixed values of a large number of parameters describing the system and the observations. The inverse problem, obtaining orbital and stellar parameters given observational data, is more complicated and computationally expensive as it requires generating a large set of forward-models to determine which set of parameters and uncertainties best represent the available observational data. The process of determining the best solution and also of obtaining reliable and robust uncertainties on those parameters often requires the use of multiple algorithms, including both optimizers and samplers. Furthermore, the forward-model of PHOEBE has been designed to be as physically robust as possible, but is computationally expensive compared to other codes. It is useful, therefore, to use whichever code is most efficient given the reasonable assumptions for a specific system, but learning the intricacies of multiple codes presents a barrier to doing this in practice. Here we present the 2.3 release of PHOEBE (publicly available from http://phoebe-project.org) which introduces a general framework for defining and handling distributions on parameters, and utilizing multiple different estimation, optimization, and sampling algorithms. The presented framework supports multiple forward-models, including the robust model built into PHOEBE itself.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源